2个回答
展开全部
对e^(x+y)+cos(xy)=0两物友边求微分者薯,得
d(e^(x+y)+cos(xy))=0
de^(x+y)+dcos(xy)=0
e^(x+y)*(dx+dy)-sin(xy)*(ydx+xdy)=0
e^(x+y)*dy-sin(xy)*xdy=-e^(x+y)*dx+sin(xy)*ydx
(e^(x+y)-sin(xy)*x)dy=(-e^(x+y)+sin(xy)*y)dx
dy/dx=(ysin(xy)-e^(x+y))/罩嫌槐(e^(x+y)-xsin(xy))
d(e^(x+y)+cos(xy))=0
de^(x+y)+dcos(xy)=0
e^(x+y)*(dx+dy)-sin(xy)*(ydx+xdy)=0
e^(x+y)*dy-sin(xy)*xdy=-e^(x+y)*dx+sin(xy)*ydx
(e^(x+y)-sin(xy)*x)dy=(-e^(x+y)+sin(xy)*y)dx
dy/dx=(ysin(xy)-e^(x+y))/罩嫌槐(e^(x+y)-xsin(xy))
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询