求证1+2+2^2+3^3+..+2^(5n-1)能被31整除 用二项式定理

 我来答
青柠姑娘17
2022-08-13 · TA获得超过1.2万个赞
知道大有可为答主
回答量:6777
采纳率:100%
帮助的人:39.4万
展开全部
首先按照等比数列求和公式计算
1+2+2^2+2^3+..+2^(5n-1)
把 5n 看成一个整体,比如设 m = 5n
则以上一共有 m 项
按照等比数列公式
Sm = 1 * (2^m -1)/(2-1) = 2^m -1
= 2^5n - 1
= (2^5)^n - 1
= 32^n -1
= (31 + 1)^n -1
对于 (31 + 1 )^n ,利用二项式定理
上式 =
31^n + C(n,1)* 31^(n-1) + C(n,2)*31^(n-2) + …… + C(n,n-1)*31 + C(n,n) - 1
其中 C(n,n) = 1,所以 继续
= 31^n + C(n,1)* 31^(n-1) + C(n,2)*31^(n-2) + …… + C(n,n-1)*31
每项中 都含有31,所以 ……
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式