基本不等式公式是什么
基本不等式公式:a+b≥2√(ab)。a大于0,b大于0,当且仅当a=b时,等号成立。
常用不等式公式:
①√((a²+b²)/2)≥(a+b)/2≥√ab≥2/(1/a+1/b)
②√(ab)≤(a+b)/2
③a²+b²≥2ab
④ab≤(a+b)²/4
⑤||a|-|b| |≤|a+b|≤|a|+|b|
扩展资料:
基本不等式应用:
1、应用基本不等式解题一定要注意应用的前提:“一正”“二定”“三相等”。所谓“一正”是指正数,“二定”是指应用基本不等式求最值时,和或积为定值,“三相等”是指满足等号成立的条件.
2、在利用基本不等式求最值时,要根据式子的特征灵活变形,配凑出积、和为常数的形式,然后再利用基本不等式。
3、条件最值的求解通常有两种方法:
(1)一是消元法,即根据条件建立两个量之间的函数关系,然后代入代数式转化为函数的最值求解;
(2)二是将条件灵活变形,利用常数“1”代换的方法构造和或积为常数的式子,然后利用基本不等式求解最值。
参考资料来源:百度百科-基本不等式
基本不等式是主要应用于求某些函数的最值及证明的不等式。其表述为:两个正实数的算术平均数大于或等于它们的几何平均数。
常用的不等式的基本性质:a>b,b>c→a>c;
a>b→a+c>b+c;
a>b,c>0→ac>bc;
a>b,cb>0,c>d>0→ac>bd;
a>b,ab>0→1/ab>0→a^n>b^n;
基本不等式:√(ab)≤(a+b)/2;
那么可以变为a^2-2ab+b^2≥0;
a^2+b^2≥2ab。
基本不等式两大技巧
“1”的妙用。题目中如果出现了两个式子之和为常数,要求这两个式子的倒数之和的最小值,通常用所求这个式子乘以1,然后把1用前面的常数表示出来,并将两个式子展开即可计算。如果题目已知两个式子倒数之和为常数,求两个式子之和的最小值,方法同上。
调整系数。有时候求解两个式子之积的最大值时,需要这两个式子之和为常数,但是很多时候并不是常数,这时候需要对其中某些系数进行调整,以便使其和为常数。
以上内容参考 百度百科-基本不等式
常用不等式公式:
①√((a²+b²)/2)≥(a+b)/2≥√ab≥2/(1/a+1/b)
②√(ab)≤(a+b)/2
③a²+b²≥2ab
④ab≤(a+b)²/4
⑤||a|-|b| |≤|a+b|≤|a|+|b|
常用不等式公式:
①√((a²+b²)/2)≥(a+b)/2≥√ab≥2/(1/a+1/b)
②√(ab)≤(a+b)/2
③a²+b²≥2ab
④ab≤(a+b)²/4
⑤||a|-|b| |≤|a+b|≤|a|+|b|
√(ab)≤(a+b)/2
其中a、b都必需要大于零,当且仅当a=b时取到等号
广告 您可能关注的内容 |