氮气具有哪些物理性质和化学性质
氮气的物理性质:氮气在常况下是一种无色无味的气体,占空气体积分数约78%(氧气约21%)。熔点是63 K,沸点是77 K,临界温度是126 K,难于液化。溶解度很小,常压下在283 K 时一体积水可溶解0.02体积的氮气。
氮气的化学性质:氮气的化学性质不活泼,常温下很难跟其他物质发生反应,所以常被用来制作防腐剂。但在高温、高能量条件下可与某些物质发生化学变化,用来制取对人类有用的新物质。
扩展资料
氮气,化学式为N2,通常状况下是一种无色无味的气体,而且一般氮气比空气密度小。氮气占大气总量的78.08%(体积分数),是空气的主要成份之一。在标准大气压下,氮气冷却至-195.8℃时,变成无色的液体,冷却至-209.8℃时,液态氮变成雪状的固体。氮气的化学性质不活泼,常温下很难跟其他物质发生反应,所以常被用来制作防腐剂。但在高温、高能量条件下可与某些物质发生化学变化,用来制取对人类有用的新物质。
氮气在大气中含量虽多于氧气,但是由于它的性质不活泼,所以人们是在认识氧气之后才认识氮气的。不过它的发现却早于氧气。
1755年英国化学家布拉克(Black,J.1728-1799)发现碳酸气之后不久,发现木炭在玻璃罩内燃烧后所生成的碳酸气,即使用苛性钾溶液吸收后仍然有较大量的空气剩下来。后来他的学生D·卢瑟福继续用动物做实验,把老鼠放进封闭的玻璃罩里直至其死后,发现玻璃罩中空气体积减少1/10;若将剩余的气体再用苛性钾溶液吸收,则会继续减少1/11的体积。
D·卢瑟福发现老鼠不能生存的空气里燃烧蜡烛,仍然可以见到微弱的烛光;待蜡烛熄灭后,往其中放入少量的磷,磷仍能燃烧一会,对除掉空气中的助燃气来说,效果是好的。把磷燃烧后剩余的气体进行研究,D·卢瑟福发现这气体不能维持生命,具有灭火性质,也不溶于苛性钾溶液,因此命名为“浊气”或“毒气”。
在同一年,普利斯特里作类似的燃烧实验,发现使1/5的空气变为碳酸气,用石灰水吸收后的气体不助燃也不助呼吸。由于他同D·卢瑟福都是深信燃素学说的,因此他们把剩下来的气体叫做“被燃素饱和了的空气”。
参考资料:百度百科-氮气
2024-12-11 广告
1、氮气物理性质:一种无色无味的气体,占空气体积分数约78%(氧气约21%)。熔点是63 K,沸点是77 K,临界温度是126 K,难于液化。溶解度很小,常压下在283 K 时一体积水可溶解0.02体积的氮气。
2、氮气化学性质:正价氮呈酸性,负价氮呈碱性。其化学性质十分稳定,只有在高温高压并有催化剂存在的条件下,氮气成分可以和氢气反应生成氨。与不同活性的金属反应情况不同,与碱土金属 —般需要在髙温下化合;与碱金属在常温下直接化合;与其他族元素的单质反应则需要更高的反应条件。
扩展资料:
1、氮在地壳中的含量很少,自然界中绝大部分的氮是以单质分子氮气的形式存在于大气中,氮气占空气体积的百分之七十八。氮的最重要的矿物是硝酸盐。
2、氮在自然界主要以双原子分子的形式存在于大气中,因而工业上由液态空气分馏来获得氮气。产品通常储存在钢瓶中出售。从空气分馏得到的氮气纯度约为99%,其中含少量的氧气、氩气及水等杂质。
3、有效利用氮气的主要途径是合成氨,但要求条件很高。近年来,人们在竭力弄清植物固氮的机理,争取用化学的方法模拟生物固氮,来实现在温和条件下开发利用空气中的氮资源。
4、由于氮的化学惰性,常用作保护气体,如:瓜果,食品,灯泡填充气。以防止某些物体暴露于空气时被氧所氧化,用氮气填充粮仓,可使粮食不霉烂、不发芽,长期保存。液氮还可用作深度冷冻剂。
物理性质
氮气在常况下是一种无色无味的气体,占空气体积分数约78%(氧气约21%)。熔点是63 K,沸点是77 K,临界温度是126 K,难于液化。溶解度很小,常压下在283 K 时一体积水可溶解0.02体积的氮气。
氮气是难液化的气体。氮气在极低温下会
化学性质
由氮元素的氧化态-吉布斯自由能图也可以看出,除了NH4+离子外,氧化数为0的N2分子在图中曲线的最低点,这表明相对于其它氧化数的氮的化合物来讲的话,N2是热力学稳定状态结构。
氧化数为0到+5之间的各种氮的化合物的值都位于HNO3和N2两点的连线(图中的虚线)的上方。因此,这些化合物在热力学上是不稳定的,容易发生歧化反应。在图中的一个比N2分子值低的是NH4+离子。
正价氮呈酸性,负价氮呈碱性。
由氮分子中三键键能很大,不容易被破坏,因此其化学性质十分稳定,只有在高温高压并有催化剂存在的条件下,氮气成分可以和氢气反应生成氨。
同时,由于氮分子的化学结构比较稳定,氰根离子CN-和碳化钙CaC2中的C22-和氮分子结构相似。
氮分子中存在氮氮叁键,键能很大(941 KJ/mol),以至于加热到3273K时仅有0.1%离解,氮分子是已知双原子分子中最稳定的。氮气是CO的等电子体,在结构和性质上有许多相似之处。
不同活性的金属与氮气的反应情况不同。与碱金属在常温下直接化合;与碱土金属 —般需要在髙温下化合;与其他族元素的单质反应则需要更高的反应条件。
液化成无色液体,进一步降低温度时,更会形成白色晶状固体。在生产中,通常采用黑色钢瓶盛放氮气。
扩展资料:
氮气纯化方法
加氢除氧法
在催化剂作用下,普氮中残余氧和加入的氢发生化学反应生成水,其反应式:2H2+O2=2H2O,再通过后级干燥除去水份,而获得下列主要成份的高纯氮:N2≥99.999 %,O2≤5×10-6,H2≤1500×10-6,H2O≤10.7×10-6。制氮成本在0.5元/m3左右。
加氢除氧、除氢法
此法分三级,第一级加氢除氧,第二级除氢,第三级除水,获得下列组成的高纯氮:N2≥99.999%,O2≤5×10-6,H2≤5×10-6,H2O≤10.7×10-6。制氮成本在0.6元/m3左右。
碳脱氧法
在碳载型催化剂作用下(在一定温度下),普氮中之残氧和催化剂本身提供的碳发生反应,生成CO2。反应式:C+O2=CO2。再经过后级除CO2和H2O获得下列组成的高纯氮气:N2≥99.999%,O2≤5×10-6,CO2≤5×10-6,H2O≤10.7×10-6。制氮成本在0.6元/m3左右。
优劣评比
上述三种氮气纯化方法中,
方法(1)因成品氮中H2量过高满足不了磁性材料的要求,故不采用;
方法(2)成品氮纯度符合磁性材料用户的要求,但需氢源,而且氢气在运输、贮存、使用中都存在不安全因素;
方法(3)成品氮的质量完全可满足磁性材料的用气要求,工艺中不使用H2,无加氢法带来的问题,氮中无H2且成品氮的质量不受普氮波动的影响,故和其他氮气纯法相比,氮气质量更加稳定,是最适合磁性材料行业中一种氮气纯化方法。
参考资料:百度百科----氮气
(2)化学性质:氮气的化学性质不活泼,常温下难与其他物质发生化学反应.
N2 + O2 == 2NO
N2 + 3H2 <==> 2NH3
3Mg + N2 == Mg3N2