展开全部
Ab=A(a1+a2+a3)=Aa1+Aa2+Aa3=n1a1+n2a2+n3a3
A^2b=A(Ab)=A(n1a1+n2a2+n3a3)=n1^2a1+n2^2a2+n3^2a3
所以 (b,Ab,A^2b) = (a1,a2,a3) K
其中 K =
1 n1 n1^2
1 n2 n2^2
1 n3 n3^2
因为 n1,n2,n3 两两不同, 所以|K|≠0, 故K可逆.
又因为A的属于不同特征值的特征向量线性无关
所以 r(a1,a2,a3)=3
所以 r(b,Ab,A^2b) = r(a1,a2,a3) = 3
即 b,Ab,A^2b线性无关.
A^2b=A(Ab)=A(n1a1+n2a2+n3a3)=n1^2a1+n2^2a2+n3^2a3
所以 (b,Ab,A^2b) = (a1,a2,a3) K
其中 K =
1 n1 n1^2
1 n2 n2^2
1 n3 n3^2
因为 n1,n2,n3 两两不同, 所以|K|≠0, 故K可逆.
又因为A的属于不同特征值的特征向量线性无关
所以 r(a1,a2,a3)=3
所以 r(b,Ab,A^2b) = r(a1,a2,a3) = 3
即 b,Ab,A^2b线性无关.
追问
谢谢、、“
又因为A的属于不同特征值的特征向量线性无关
”————这是什么意思啊 ,念不过去
追答
a1,a2,a3 是A的分别属于不同特征值n1 n2 n3 的特征向量
所以 a1,a2,a3 线性无关
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询