
已知2x-y=0,求x^2-y^2/x^3+y^3÷(x-y)^2/(x+y)^3的值
展开全部
解:
由2x-y=0,得y=2x
(x²-y²)/(x³+y³)÷(x-y)²/(x+y)³
=(x²-y²)/(x³+y³)·(x+y)³/(x-y)²
=[x²-(2x)²]/[x³+(2x)³]·(x+2x)³/(x-2x)²
=(x²-4x²)/(x³+8x³)·(3x)³/(-x)²
=(-3x²)/(9x³)·(27x³)/x²
=-1/(3x)·27x
=-9
由2x-y=0,得y=2x
(x²-y²)/(x³+y³)÷(x-y)²/(x+y)³
=(x²-y²)/(x³+y³)·(x+y)³/(x-y)²
=[x²-(2x)²]/[x³+(2x)³]·(x+2x)³/(x-2x)²
=(x²-4x²)/(x³+8x³)·(3x)³/(-x)²
=(-3x²)/(9x³)·(27x³)/x²
=-1/(3x)·27x
=-9
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询