∫1/(1+sinx)dx
3个回答
展开全部
一般出现这种形势的三角积分
都使用万能公式法
也就是令t=tan(x/2)
sinx=2t/(1+t^2)
都使用万能公式法
也就是令t=tan(x/2)
sinx=2t/(1+t^2)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
用万能代换
∫1/(1+sinx)dx
=∫[sin^2(x/2)+cos^2(x/2)]/[sin^2(x/2)+cos^2(x/2)+2sin(x/2)cos(x/2)]dx
=∫[1+tan^2(x/2)]/[tan^2(x/2)+1+2tan(x/2)]dx
=∫sec^2(x/2)/[tan(x/2)+1]^2dx
=2∫1/[tan(x/2)+1]^2dtan(x/2)
=-2/[tan(x/2)+1]+C
∫1/(1+sinx)dx
=∫[sin^2(x/2)+cos^2(x/2)]/[sin^2(x/2)+cos^2(x/2)+2sin(x/2)cos(x/2)]dx
=∫[1+tan^2(x/2)]/[tan^2(x/2)+1+2tan(x/2)]dx
=∫sec^2(x/2)/[tan(x/2)+1]^2dx
=2∫1/[tan(x/2)+1]^2dtan(x/2)
=-2/[tan(x/2)+1]+C
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
t=tan(x/2),∫1/(1+sinx)dx=∫1/(1+2t/(1+t^2))*2t/(1+t^2)dt
=∫2t/(1+t)^2dt
=∫(2/(1+t)-2/(1+t)^2)dt
=2ln(1+t)+2/(1+t)+C
=2ln(1+tan(x/2)+2/(1+tan(x/2))+C
=∫2t/(1+t)^2dt
=∫(2/(1+t)-2/(1+t)^2)dt
=2ln(1+t)+2/(1+t)+C
=2ln(1+tan(x/2)+2/(1+tan(x/2))+C
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |