量子力学 为什么要用波函数描述微观粒子的运动状态
2个回答
展开全部
由于一切微观粒子都具有波粒二象性(从爱因斯坦的光子理论,到德布罗依的推断及电子衍射实验,到以后实验中关于许多粒子流的衍射现象,都证明了波粒二象性的普适意义),因而原子中电子的运动应该服从某种波动规律。
以微观粒子的波粒二象性为基础,薛定谔建立了描述微观粒子运动规律的波动方程。薛定谔方程,是波函数对x,,y,z三个空间坐标变量的二阶偏微分方程。波函数,是薛定谔引入的一个物理量,是空间坐标(x,y,z)的函数,也可以用球坐标表示。
薛定谔方程不是用数学方法推导出来的,是大量实验事实证明的。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
希卓
2024-10-17 广告
2024-10-17 广告
分布式应变监测技术是现代结构健康监测的重要组成部分。它通过在结构内部或表面布置多个应变传感器,实现对结构变形和应变的连续、实时监测。这种技术能够准确捕捉结构在各种载荷和环境条件下的应变响应,为结构的安全评估、损伤预警和寿命预测提供重要数据支...
点击进入详情页
本回答由希卓提供
展开全部
由于一切微观粒子都具有波粒二象性(从爱因斯坦的光子理论,到德布罗依的推断及电子衍射实验,到以后实验中关于许多粒子流的衍射现象,都证明了波粒二象性的普适意义),因而原子中电子的运动应该服从某种波动规律。
以微观粒子的波粒二象性为基础,薛定谔建立了描述微观粒子运动规律的波动方程。薛定谔方程,是波函数对x,,y,z三个空间坐标变量的二阶偏微分方程。波函数,是薛定谔引入的一个物理量,是空间坐标(x,y,z)的函数,也可以用球坐标表示。
薛定谔方程不是用数学方法推导出来的,是大量实验事实证明的。
以微观粒子的波粒二象性为基础,薛定谔建立了描述微观粒子运动规律的波动方程。薛定谔方程,是波函数对x,,y,z三个空间坐标变量的二阶偏微分方程。波函数,是薛定谔引入的一个物理量,是空间坐标(x,y,z)的函数,也可以用球坐标表示。
薛定谔方程不是用数学方法推导出来的,是大量实验事实证明的。
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询