数学题请大神回答
有一堆棋子,拿掉两枚后平均分成四份;拿出其中一份,从中拿掉两枚后再平均分成四份;拿出其中一份,从中拿掉两枚后又能平均分成四份,这堆棋子原来至少有多少枚?...
有一堆棋子,拿掉两枚后平均分成四份;拿出其中一份,从中拿掉两枚后再平均分成四份;拿出其中一份,从中拿掉两枚后又能平均分成四份,这堆棋子原来至少有多少枚?
展开
11个回答
展开全部
最少的话,最后分成四份中的一份就是1枚,而这是四份中的一份,四份就是1*4=4(枚)从中拿掉两枚,要复原的话就要+2,以此类推,综合算式为:
【(1*4+2)*4+2】*4+2
= 【24+2】*4+2
= 26*4+2
=104+2
=106(枚)
答:应为106枚硬币。
本题利用的是倒推法。倒退时,记住要把“+”看成“-”,“-”看成“+”,“*”看成“/”,“/”看成“*”
【(1*4+2)*4+2】*4+2
= 【24+2】*4+2
= 26*4+2
=104+2
=106(枚)
答:应为106枚硬币。
本题利用的是倒推法。倒退时,记住要把“+”看成“-”,“-”看成“+”,“*”看成“/”,“/”看成“*”
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
设总数为X那么第一次拿走2枚成了x-2
然后分成4份成了(X-2)/4
拿走一份(X-2)-(X-2)/4 为3/4(X-2)
再拿2枚[(X-2)-(X-2)/4 ]-2 为3/4(X-2)-2
在分成4份 [3/4(X-2)-2 ]/4
再拿走1份 3/4(X-2)-2-[3/4(X-2)-2 ]/4 成为3/4[3/4(X-2)-2]
第三次拿走2枚3/4[3/4(X-2)-2]-2
最后成为3/4[3/4(X-2)-2]-2除以4
得(9X-74)/64
当X=58枚时可以整除,
这堆棋子原来至少有58枚
然后分成4份成了(X-2)/4
拿走一份(X-2)-(X-2)/4 为3/4(X-2)
再拿2枚[(X-2)-(X-2)/4 ]-2 为3/4(X-2)-2
在分成4份 [3/4(X-2)-2 ]/4
再拿走1份 3/4(X-2)-2-[3/4(X-2)-2 ]/4 成为3/4[3/4(X-2)-2]
第三次拿走2枚3/4[3/4(X-2)-2]-2
最后成为3/4[3/4(X-2)-2]-2除以4
得(9X-74)/64
当X=58枚时可以整除,
这堆棋子原来至少有58枚
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
1x4+2
=4+2
=6枚
6x4+2
=24+2
=26枚
26x4+2
=104+2
=106枚
很高兴为您解答,祝你学习进步!有不明白的可以追问!
如果您认可我的回答,请点击下面的【选为满意回答】按钮,谢谢!
=4+2
=6枚
6x4+2
=24+2
=26枚
26x4+2
=104+2
=106枚
很高兴为您解答,祝你学习进步!有不明白的可以追问!
如果您认可我的回答,请点击下面的【选为满意回答】按钮,谢谢!
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
设共有x个棋子
拿掉两个分成四份就为(X-2)÷4
其中一份再拿掉两个分成四份就为[(X-2)÷4-2]÷4
其中一份再拿掉两个分成四份就为{[(X-2)÷4-2]÷4-2}÷4-2
若最后每份为0则无意义
因此最后每份为1则令{[(X-2)÷4-2]÷4-2}÷4-2=1解的x =106
拿掉两个分成四份就为(X-2)÷4
其中一份再拿掉两个分成四份就为[(X-2)÷4-2]÷4
其中一份再拿掉两个分成四份就为{[(X-2)÷4-2]÷4-2}÷4-2
若最后每份为0则无意义
因此最后每份为1则令{[(X-2)÷4-2]÷4-2}÷4-2=1解的x =106
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
想让原来最少,即最后一份最少(=1),
4(4(4×1+2)+2)+2=106
4(4(4×1+2)+2)+2=106
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
解:设现在每一份有x颗棋子
原来的棋子数可以表示为
4(4(4x+2)+2)+2
=4(16x+8+2)+2
=64x+40+2
=64x+42
剩下的就只要看最后每一堆有几颗棋子,代入就可以了
原来的棋子数可以表示为
4(4(4x+2)+2)+2
=4(16x+8+2)+2
=64x+40+2
=64x+42
剩下的就只要看最后每一堆有几颗棋子,代入就可以了
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询