展开全部
Sn=10n-n^2
S(n-1)=10(n-1)-(n-1)^2=10n-10-n^2+2n-1=12n-11-n^2
Sn-S(n-1)=an
=10n-n^2-12n+11+n^2
=11-2n
当an>0时
11-2n>0
2n-11<0
n<5.5
当n<=5时 an>0 当 n>=6时 an<0
所以
S5=10*5-5^2=25
S(6到n)=Sn-S5 =10n-n^2-25=-n^2+10-25=-(n-5)^2
所以
|S(6到n)|=|-(n-5)^2|=(n-5)^2
所以
Tn=S5+|S(6到n)|=25+(n-5)^2=n^2-10n+50
S(n-1)=10(n-1)-(n-1)^2=10n-10-n^2+2n-1=12n-11-n^2
Sn-S(n-1)=an
=10n-n^2-12n+11+n^2
=11-2n
当an>0时
11-2n>0
2n-11<0
n<5.5
当n<=5时 an>0 当 n>=6时 an<0
所以
S5=10*5-5^2=25
S(6到n)=Sn-S5 =10n-n^2-25=-n^2+10-25=-(n-5)^2
所以
|S(6到n)|=|-(n-5)^2|=(n-5)^2
所以
Tn=S5+|S(6到n)|=25+(n-5)^2=n^2-10n+50
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询