当a,b为何值时,方程x²+2(1+a)x+(3a²+4ab+4b²+2)=0有实数根
3个回答
展开全部
∵方程有实数根
∴判别式大于等于0
△=[2(1+a)]²-4(3a²+4ab+4b²+2)
=[4(1+2a+a²)]-4(3a²+4ab+4b²+2)
=(4+8a+4a²)-(12a²+16ab+16b²+8)
=4+8a+4a²-12a²-16ab-16b²-8
=-8a²-16ab-16b²+8a-4
=-4(a²+4ab+4b²)-4(a²-2a+1)
=-4(a+2b)²-4(a-1)²
∵(a+2b)²≥0,(a-1)²≥0
∴△≤0
又∵方程有实数根
∴△=0
∴a+2b=0
a-1=0
∴a=1,b=-1/2
∴判别式大于等于0
△=[2(1+a)]²-4(3a²+4ab+4b²+2)
=[4(1+2a+a²)]-4(3a²+4ab+4b²+2)
=(4+8a+4a²)-(12a²+16ab+16b²+8)
=4+8a+4a²-12a²-16ab-16b²-8
=-8a²-16ab-16b²+8a-4
=-4(a²+4ab+4b²)-4(a²-2a+1)
=-4(a+2b)²-4(a-1)²
∵(a+2b)²≥0,(a-1)²≥0
∴△≤0
又∵方程有实数根
∴△=0
∴a+2b=0
a-1=0
∴a=1,b=-1/2
展开全部
当△>=o即[2(1+a)]²-4*1*(3a²+4ab+4b²+2)>0时,方程有实数根。
△=[2(1+a)]²-4(3a²+4ab+4b²+2)
=[4(1+2a+a²)]-4(3a²+4ab+4b²+2)
=(4+8a+4a²)-(12a²+16ab+16b²+8)
=4+8a+4a²-12a²-16ab-16b²-8
=-8a²-16ab-16b²+8a-4
=-4(a²+4ab+4b²)-4(a²-2a+1)
=-4(a+2b)²-4(a-1)²
因为(a+2b)²>=,(a-1)²>=0
所以△<=0
又因为方程有实数根(即△>+o)
所以△=0
a+2b=0
a-1=0
所以a=1,b=-1/2
△=[2(1+a)]²-4(3a²+4ab+4b²+2)
=[4(1+2a+a²)]-4(3a²+4ab+4b²+2)
=(4+8a+4a²)-(12a²+16ab+16b²+8)
=4+8a+4a²-12a²-16ab-16b²-8
=-8a²-16ab-16b²+8a-4
=-4(a²+4ab+4b²)-4(a²-2a+1)
=-4(a+2b)²-4(a-1)²
因为(a+2b)²>=,(a-1)²>=0
所以△<=0
又因为方程有实数根(即△>+o)
所以△=0
a+2b=0
a-1=0
所以a=1,b=-1/2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
用判别式来进行判别
判别式>=0就有实根了
判别式>=0就有实根了
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询