已知函数f(x)=log1/2(ax^2+3x+a+1) 对于x∈【1,2】不等式(1/2)^f(x)-3x≥2恒成立,求正实数a的取值范围
2个回答
展开全部
解:(1/2)^f(x)-3x=(1/2)^[log‹1/2›(ax²+3x+a+1)]-3x=ax²+3x+a+1-3x=ax²+a+1≧2
即已知不等式 ax²+a-1≧0 在区间[1,2]内恒成立,设y=ax²+a-1,由于a是正实数,故y的图像
是一条开口朝上的抛物线,其顶点为(0,a-1),故区间[1,2]在其对称轴的右侧,为了使不等式
y=ax²+a-1≧0 在区间[1,2]内恒成立,必须使y(1)=2a-1≧0,即a≧1/2. 这就是a的取值范围。
祝你学习天天向上,如果满意请点击选为满意答案。
即已知不等式 ax²+a-1≧0 在区间[1,2]内恒成立,设y=ax²+a-1,由于a是正实数,故y的图像
是一条开口朝上的抛物线,其顶点为(0,a-1),故区间[1,2]在其对称轴的右侧,为了使不等式
y=ax²+a-1≧0 在区间[1,2]内恒成立,必须使y(1)=2a-1≧0,即a≧1/2. 这就是a的取值范围。
祝你学习天天向上,如果满意请点击选为满意答案。
来自:求助得到的回答
展开全部
解:(1/2)^f(x)-3x=(1/2)^[log‹1/2›(ax²+3x+a+1)]-3x=ax²+3x+a+1-3x=ax²+a+1≧2
即已知不等式 ax²+a-1≧0 在区间[1,2]内恒成立,设y=ax²+a-1,由于a是正实数,故y的图像
是一条开口朝上的抛物线,其顶点为(0,a-1),故区间[1,2]在其对称轴的右侧,为了使不等式
y=ax²+a-1≧0 在区间[1,2]内恒成立,必须使y(1)=2a-1≧0,即a≧1/2. 这就是a的取值范围。
请指教
即已知不等式 ax²+a-1≧0 在区间[1,2]内恒成立,设y=ax²+a-1,由于a是正实数,故y的图像
是一条开口朝上的抛物线,其顶点为(0,a-1),故区间[1,2]在其对称轴的右侧,为了使不等式
y=ax²+a-1≧0 在区间[1,2]内恒成立,必须使y(1)=2a-1≧0,即a≧1/2. 这就是a的取值范围。
请指教
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询