高数 已知方程:e^y+e^(2x)=xy,求由方程确定的隐函数的导数dy/dx

yxue
2012-11-25 · TA获得超过2.9万个赞
知道大有可为答主
回答量:1.2万
采纳率:94%
帮助的人:3126万
展开全部
f(x,y)=e^y+e^(2x)-xy=0 用隐函数存在定理:
dy/dx=-f 'x/f 'y f 'x ,f 'y 分别为f(x,y)对x,y的偏导数。
f 'x=2e^(2x)-y
f 'y=e^y-x
dy/dx=-[2e^(2x)-y]/(e^y-x)
当然:也可以对:e^y+e^(2x)=xy 两边对x求导,解出y’,结果一样。
百度网友ce8d01c
2012-11-25 · 知道合伙人教育行家
百度网友ce8d01c
知道合伙人教育行家
采纳数:20071 获赞数:87098
喜欢数学

向TA提问 私信TA
展开全部
两边对x求导得
e^y*y'+2e^(2x)=y+xy'

然后再解得y'就可以了
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式