设A是数域P上的n阶矩阵,数a为A的n重特征值,如果A在P上相似于对角矩阵,证明A=aE为数量矩阵

百度网友c92221e2b
2012-11-25 · TA获得超过1932个赞
知道小有建树答主
回答量:907
采纳率:100%
帮助的人:278万
展开全部
由于A可对角化,故A的最小多项式无重根(这是个定理)
又由于a为A的n重特征根,故A有n个初等因子,都为λ-a
故A的若当标准型为diag(a,a,...,a)
故存在可逆矩阵P使得P^(-1)AP=diag(a,a,...,a)=aE(此也为定理)
故A=PaEP^(-1)=aE
证毕
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式