微分方程y''-2y'+2y=e^x的通解
2个回答
展开全部
特征方程
r^2-2r+2=0
r=1±i
齐次通解y=e^x(C1cosx+C2sinx)
设其特解是y=ae^x
y''=y'=y代入原方程得
a=1
所以特解是y=e^x
原方程的通解是
y=e^x(C1cosx+C2sinx)+e^x
r^2-2r+2=0
r=1±i
齐次通解y=e^x(C1cosx+C2sinx)
设其特解是y=ae^x
y''=y'=y代入原方程得
a=1
所以特解是y=e^x
原方程的通解是
y=e^x(C1cosx+C2sinx)+e^x
更多追问追答
追问
特解的设定有什么规律么?
追答
有啊。如果不麻烦的话,你去青一色大学生吧,找个学习帖,里面有的。你也可以看书。因为这里帖不上地址。
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询