展开全部
f(2^n)>1+n/2 (n>1)
n=2时:
f(4)=1+1/2+1/3+1/4=2+1/12>2
令n=k成立,即:f(2^k)=1+1/2+1/3+1/4+...+1/(2^k)>1+k/2
当n=k+1时:
f[2^(k+1)]=1+1/2+1/3+1/4+...+1/(2^k)+1/(2^k+1)+1/(2^k+2)+...+1/(2^k+2^k)
>1+k/2+[1/(2^k+1)+1/(2^k+2)+...+1/(2^k+2^k)]
>1+k/2+[1/(2^k+2^k)+1/(2^k+2^2)+...+1/(2^k+2^k)]
=1+k/2+2^k/(2*2^k)
=1+k/2+1/2
=1+(K+1)/2
即:f[2^(k+1)]>1+(K+1)/2成立。
也就是猜想成立!
n=2时:
f(4)=1+1/2+1/3+1/4=2+1/12>2
令n=k成立,即:f(2^k)=1+1/2+1/3+1/4+...+1/(2^k)>1+k/2
当n=k+1时:
f[2^(k+1)]=1+1/2+1/3+1/4+...+1/(2^k)+1/(2^k+1)+1/(2^k+2)+...+1/(2^k+2^k)
>1+k/2+[1/(2^k+1)+1/(2^k+2)+...+1/(2^k+2^k)]
>1+k/2+[1/(2^k+2^k)+1/(2^k+2^2)+...+1/(2^k+2^k)]
=1+k/2+2^k/(2*2^k)
=1+k/2+1/2
=1+(K+1)/2
即:f[2^(k+1)]>1+(K+1)/2成立。
也就是猜想成立!
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询