2个回答
展开全部
证明:连接AF
∵EF为AC的垂直平分线
∴AF=CF
∴∠FAE=∠FCE=30
∴∠FAB=∠BAC-∠FAC=90
∴△BAF为直角三角形
在Rt△BAF中
∠B=30
∴AF=1/2BF(直角三角形中30度角所对应边为斜边的一半)
又∵AF=CF(已证明)
∴CF=1/2BF
∴BF=2CF
∵EF为AC的垂直平分线
∴AF=CF
∴∠FAE=∠FCE=30
∴∠FAB=∠BAC-∠FAC=90
∴△BAF为直角三角形
在Rt△BAF中
∠B=30
∴AF=1/2BF(直角三角形中30度角所对应边为斜边的一半)
又∵AF=CF(已证明)
∴CF=1/2BF
∴BF=2CF
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询