如图,在△ABC中,AB=AC,∠BAC=90°,分别过B,C向过点A的直线作垂线,垂足为E,F.
(1)如图1,过点A的直线与斜边BC不相交时,证明:EF=BE+CF;(2)如图2,过点A的直线与斜边BC相交时,其他条件不变。你能得出什么结论?请你给出证明。...
(1)如图1,过点A的直线与斜边BC不相交时,证明:EF=BE+CF;(2) 如图2,过点A的直线与斜边BC相交时,其他条件不变。你能得出什么结论?请你给出证明。
展开
2个回答
展开全部
(1)证明:∵BE⊥EA,CF⊥AF,
∴∠BAC=∠BEA=∠CFE=90°,
∴∠EAB+∠CAF=90°,∠EBA+∠EAB=90°,
∴∠CAF=∠EBA,
在△ABE和△CAF中,
∠BEA=∠AFC=90°,∠EBA=∠CAF,AB=AC,
∴△BEA≌△AFC.
∴EA=FC,BE=AF.
∴EF=EA+AF=BE+CF.
(2)结论:EF=BE-CF,
理由是:∵BE⊥EA,轿雀段CF⊥AF,
∴∠BAC=∠BEA=∠CFE=90°,
∴∠EAB+∠CAF=90°,∠ABE+∠EAB=90°,
∴闭誉∠CAF=∠ABE,
在△ABE和△ACF中,岁态
∠BEA=∠AFC=90°,∠EBA=∠CAF,AB=AC,
∴△BEA≌△AFC.
∴EA=FC,BE=AF.
∵EF=AF-AE,
∴EF=BE-CF.
∴∠BAC=∠BEA=∠CFE=90°,
∴∠EAB+∠CAF=90°,∠EBA+∠EAB=90°,
∴∠CAF=∠EBA,
在△ABE和△CAF中,
∠BEA=∠AFC=90°,∠EBA=∠CAF,AB=AC,
∴△BEA≌△AFC.
∴EA=FC,BE=AF.
∴EF=EA+AF=BE+CF.
(2)结论:EF=BE-CF,
理由是:∵BE⊥EA,轿雀段CF⊥AF,
∴∠BAC=∠BEA=∠CFE=90°,
∴∠EAB+∠CAF=90°,∠ABE+∠EAB=90°,
∴闭誉∠CAF=∠ABE,
在△ABE和△ACF中,岁态
∠BEA=∠AFC=90°,∠EBA=∠CAF,AB=AC,
∴△BEA≌△AFC.
∴EA=FC,BE=AF.
∵EF=AF-AE,
∴EF=BE-CF.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询