求n阶导数怎么来
概念上讲,高阶导数计算就是连续进行一阶导数的计算。因此只需根据一阶导数计算规则逐阶求导就可以了,但从实际计算角度看,却存在两个方面的问题:
1、一是对抽象函数高阶导数计算,随着求导次数的增加,中间变量的出现次数会增多,需注意识别和区分各阶求导过程中的中间变量。
2、二是逐阶求导对求导次数不高时是可行的,当求导次数较高或求任意阶导数时,逐阶求导实际是行不通的,此时需研究专门的方法。
任意阶导数的计算:
对任意n阶导数的计算,由于 n 不是确定值,自然不可能通过逐阶求导的方法计算。此外,对于固定阶导数的计算,当其阶数较高时也不可能逐阶计算。
所谓n阶导数的计算实际就是要设法求出以n为参数的导函数表达式。求n阶导数的参数表达式并没有一般的方法,最常用的方法是,先按导数计算法求出若干阶导数,再设法找出其间的规律性,并导出n的参数关系式。
先求前几阶,再找规律。
y ' = 2sinxcosx = sin2x
y '' = 2cos2x
y ''' = -4sin2x
y^(4) = -8cos2x
一般地,y^(n) = 2^(n-1) * sin[2x+(n-1)兀/2]
例如:
y=lnx/x
y'=(1-lnx)/x^2=1/x^2-lnx/x^2
y"=-2/x^3-(1-2lnx)/x^3=-3/x^3+2lnx/x^3
记y(n)=(-1)^(n+1)*[ an- n!lnx]/x^(n+1)
有y(n+1)=(-1)^n*an (n+1)/x^(n+2)+(-1)^n* n![1- (n+1)lnx]/x^(n+2)
a(n+1)=(n+1)an+n!
a1=1,a2=3,a3=11,a4=50,a5=274
扩展资料:
高阶导数计算就是连续进行一阶导数的计算。因此只需根据一阶导数计算规则逐阶求导就可以了,但从实际计算角度看,却存在两个方面的问题:
(1)一是对抽象函数高阶导数计算,随着求导次数的增加,中间变量的出现次数会增多,需注意识别和区分各阶求导过程中的中间变量。
(2)二是逐阶求导对求导次数不高时是可行的,当求导次数较高或求任意阶导数时,逐阶求导实际是行不通的,此时需研究专门的方法。
所以n阶求导之后其余项的导数均为0,而x^n的导数是n!
即f(x)的n阶导数是n!
不是
是错了,应该是n+1次多项式,最高次幂是n+1,其次是n,其余各项n次求导后均为零
所以n阶导数一定ax+b的形式,a=1这个很容易看出来,而b是n次方的系数,也就是n+1个式子中任意n个x相乘后再与乘下一项中的常数项相乘
从而b=-1-2-3-......-n=-n(n+1)/2
所以最后的结果是x-n(n+1)/2