如何理解自变量趋于无穷大时函数的极限的定义

 我来答
天下谈生活
2021-10-19 · 生活的艺术不在传授,而在鼓舞和唤醒。
天下谈生活
采纳数:106 获赞数:3411

向TA提问 私信TA
展开全部

综述:实际上不用考虑那么多,无论自变量趋于多少,其函数值的极限都是一回事。极限表现的是,变化过程中的无限接近的性质,直观上理解就是函数值和极限值“任意小”的差别,都可以在自变量“足够大”时实现。

函数(function)的定义通常分为传统定义和近代定义,函数的两个定义本质是相同的,只是叙述概念的出发点不同,传统定义是从运动变化的观点出发,而近代定义是从集合、映射的观点出发。

函数历史

函数,最早由中国清朝数学家李善兰翻译,出于其著作《代数学》。之所以这么翻译,他给出的原因是“凡此变数中函彼变数者,则此为彼之函数”,也即函数指一个量随着另一个量的变化而变化,或者说一个量中包含另一个量。

Sievers分析仪
2024-12-30 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准... 点击进入详情页
本回答由Sievers分析仪提供
匿名用户
2019-04-05
展开全部
自变量趋于无穷大时函数极限有ε-X定义,可以理解为:
∀ε>0,∃X>0 s.t. ∀x>X:|f(x)-A|<ε 当且仅当 lim f(x) x→∞=A
对于任意的大于0但不是0的无穷小量ε,都存在一个足够大的量X>0,使得函数自变量趋于无穷大时,也就是x比任意大的数都要大时,极限都存在(f(x)与函数值之间的距离小于一个无穷小量,也就是收敛于一点)
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
小样金的天敌Bw
高粉答主

2020-11-16 · 每个回答都超有意思的
知道答主
回答量:0
采纳率:0%
帮助的人:0
展开全部
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式