非线性方程数值解法有哪些 5

独步芙蓉岸
2012-11-28 · TA获得超过2.2万个赞
知道大有可为答主
回答量:1837
采纳率:0%
帮助的人:3030万
展开全部
你好!
求解非线性方程的主要方法有:迭代法、二次插值法、切比雪夫迭代法、艾特肯加速法等。

当f(x)是超越函数或高次多项式时,f(x)=0称为非线性方程,此类方程除少数情形外,只能求近似解。求解非线性方程的主要方法是迭代法。使用这一方法一般至少要知道根的一个近似值x0,然后将原方程f(x)=0改变成与它同解但便于迭代的形式x=j(x),利用迭代公式xk+1=j(xk),k=0,1,2,……就能求出一系列逐步精确的近似值。例如常用的迭代法有:①牛顿迭代公式:k=0,1,2,……式中x0为初始近似值。②割线迭代公式:k=0,1,2,……式中x0,x1为两个初始近似值。评价一个迭代公式的优劣,除去收敛条件之外,主要是看它的效能指标,即达到规定的精确度所花费的代价。因此如何构造收敛的迭代公式,分析公式的收敛速度和收敛条件,以及加快收敛的技术,这些都是迭代法研究的课题。牛顿迭代具有较高的收敛速度和简单灵活等优点,而且可以推广到求解非线性方程组,拟牛顿法就是具有较高效能指标的求解非线性方程组的通行方法。
此外还有二次插值法、切比雪夫迭代法及艾特肯加速法等。非线性方程以高精度算术为支持,可以差商型导数为指导,可计通用求解方法。二次插值法也是高效的逼近方法,可以将非单调区间割分成单调区间,再高速逼近,其收敛速度明显高于牛顿法。
匿名用户
2012-11-29
展开全部
牛顿解法。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式