高数中的:指函数

 我来答
善言而不辩
2019-10-13 · TA获得超过2.5万个赞
知道大有可为答主
回答量:1.1万
采纳率:90%
帮助的人:2621万
展开全部

x=-3 间断点处的左极限振荡不存在,为振荡间断点,属于第二类间断点

x=2 左极限=函数值=2 右极限=0 (x-2为无穷小,|sin[1/(x-2)|≤1为有限量)

左极限、右极限均存在但不相等,为跳跃间断点,属于第一类间断点

霓屠Cn
2019-10-13 · 知道合伙人教育行家
霓屠Cn
知道合伙人教育行家
采纳数:1211 获赞数:5587

向TA提问 私信TA
展开全部
答:首先从题面来看这是三角函数和米函数的综合体,而不是指数函数. 指数函数是自变量为之数的函数。例如a^x, e^(2x+2)等等。
lim(x→-3-0)f(x)=lim(x→-3-0)cos[1/(x-3)]=cos(-∞)=cos(+∞); 值域[0,1]不确定;
lim(x→-3+0)f(x)=lim(x→-3+0)x=-3。
lim(x→2-0)f(x)=lim(x→2-0)x=2;
lim(x→2+0)f(x)=lim(x→2+0)(x-2)sin[1/(x-2)]<=0*1=0。
通过计算得出结论:1、在x=-3处,存在不确定的跳跃间断点-第二类间断点。

2、在x=2处,存在跳跃间断点-第二类间断点。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式