3个回答
展开全部
设∫f(t)dt=F(t) 则F'腔基携(t)=f(t)
则∫(1,√锋戚x)f(t)dt=F(1)-F(√x)
则d[∫(1,√x)f(t)dt]/dx=d[F(1)-F(√x)]/dx=-f(√x)/2√x
所以-f(√x)/2√x=√x
===>f(√x)=-2x
===>f(x)=-2x²
所以f'(X)=-4x
3题是af(a)
分子分母的极限都是0 用L'hospital 法则
原式=limx∫(x.a)f(t)dt/(x-a)
=lim d[x∫(x.a)f(t)dt]/dx /d(x-a)/dx
=lim(∫(x.a)f(t)dt+xf(x)/伍伏1
=[0+af(a)]/1
=af(a)
则∫(1,√锋戚x)f(t)dt=F(1)-F(√x)
则d[∫(1,√x)f(t)dt]/dx=d[F(1)-F(√x)]/dx=-f(√x)/2√x
所以-f(√x)/2√x=√x
===>f(√x)=-2x
===>f(x)=-2x²
所以f'(X)=-4x
3题是af(a)
分子分母的极限都是0 用L'hospital 法则
原式=limx∫(x.a)f(t)dt/(x-a)
=lim d[x∫(x.a)f(t)dt]/dx /d(x-a)/dx
=lim(∫(x.a)f(t)dt+xf(x)/伍伏1
=[0+af(a)]/1
=af(a)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
瑞达小美
2024-11-27 广告
2024-11-27 广告
法考分为主观题与客观题。课程针对应试,精准学习。导学、精讲、真金题、冲刺各阶段相辅相成,直击考点。瑞达法考APP一站式学习,碎片时间也能充分利用。2016年瑞达教育正式成立,总部位于北京市,在北京、天津、上海、广州、深圳、南京、杭州、海口设...
点击进入详情页
本回答由瑞达小美提供
展开全部
∫悄指如【ln[ x+√(1+x^2)]】^2 dx
=x.【ln[ x+√(1+x^2)] 】^2 - 2∫x.ln[ x+√(1+x^2)] .[1/x+√(1+x^2) ].[1 + x/√(1+x^2) ] dx
=x.【ln[ x+√(1+x^2)] 】^2 - 2∫ x.ln[ x+√(1+x^2)] /√(1+x^2) dx
=x.【ln[ x+√(1+x^2)] 】启启^2 - 2∫ ln[ x+√(1+x^2)] d√(1+x^2)
=x.【ln[ x+√(1+x^2)] 】^2 - 2 ln[ x+√逗段(1+x^2)].√(1+x^2) -2∫ dx
=x.【ln[ x+√(1+x^2)] 】^2 - 2 ln[ x+√(1+x^2)].√(1+x^2) -2x + C
=x.【ln[ x+√(1+x^2)] 】^2 - 2∫x.ln[ x+√(1+x^2)] .[1/x+√(1+x^2) ].[1 + x/√(1+x^2) ] dx
=x.【ln[ x+√(1+x^2)] 】^2 - 2∫ x.ln[ x+√(1+x^2)] /√(1+x^2) dx
=x.【ln[ x+√(1+x^2)] 】启启^2 - 2∫ ln[ x+√(1+x^2)] d√(1+x^2)
=x.【ln[ x+√(1+x^2)] 】^2 - 2 ln[ x+√逗段(1+x^2)].√(1+x^2) -2∫ dx
=x.【ln[ x+√(1+x^2)] 】^2 - 2 ln[ x+√(1+x^2)].√(1+x^2) -2x + C
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询