1个回答
展开全部
分析,因为a,b为正整数,对称轴x=-b/2a<0,开口向上
讨论,当-b/2a≤-2时,f(x)在【-2,1】单调递增,f(x)max=f(1)=a+b+c=7,
f(x)min=f(-2)=4a-2b+c=-1,消去C得a-b=-8/3,a,b∈正整数,舍去
只有-2<-b/2a<1,又分两小类-2<-b/2a<-1/2和-1/2<-b/2a<1,
则-2<-b/2a<-1/2,f(x)在(-2,-b/2a)单调递减,在(-b/2a,1)单调递增,
f(x)min=f(-b/2a)=c-b^2/4a=-1,f(x)max=f(1)=a+b+c=7,
消去C得b^2+4ab+4a^2-32a=0,即(b+2a)^2=32a,b+2a=4√(2a),
a为偶数,且2a是完全平方数,1≤a≤5,
a=2,b=4,c=1,满足条件,
则-1/2<-b/2a<1,f(x)在(-2,-b/2a)单调递减,在(-b/2a,1)单调递增,
f(x)min=f(-b/2a)=c-b^2/4a=-1,f(x)max=f(-2)=4a-2b+c=7,
消去C得b^2-8ab+16a^2-32a=0,即(b-4a)^2=32a,
b-4a=4√(2a),a为偶数,且2a是完全平方数,1≤a≤5,
a=2,b=16,舍去,
综上a=2,b=4,c=1,f(x)=2x^2+4x+1
讨论,当-b/2a≤-2时,f(x)在【-2,1】单调递增,f(x)max=f(1)=a+b+c=7,
f(x)min=f(-2)=4a-2b+c=-1,消去C得a-b=-8/3,a,b∈正整数,舍去
只有-2<-b/2a<1,又分两小类-2<-b/2a<-1/2和-1/2<-b/2a<1,
则-2<-b/2a<-1/2,f(x)在(-2,-b/2a)单调递减,在(-b/2a,1)单调递增,
f(x)min=f(-b/2a)=c-b^2/4a=-1,f(x)max=f(1)=a+b+c=7,
消去C得b^2+4ab+4a^2-32a=0,即(b+2a)^2=32a,b+2a=4√(2a),
a为偶数,且2a是完全平方数,1≤a≤5,
a=2,b=4,c=1,满足条件,
则-1/2<-b/2a<1,f(x)在(-2,-b/2a)单调递减,在(-b/2a,1)单调递增,
f(x)min=f(-b/2a)=c-b^2/4a=-1,f(x)max=f(-2)=4a-2b+c=7,
消去C得b^2-8ab+16a^2-32a=0,即(b-4a)^2=32a,
b-4a=4√(2a),a为偶数,且2a是完全平方数,1≤a≤5,
a=2,b=16,舍去,
综上a=2,b=4,c=1,f(x)=2x^2+4x+1
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询