2个回答
展开全部
z=ln√(x²+y²)=(1/2)ln(x²+y²);
∂z/∂x=x/(x²+y²); ∂²z/∂x²=[(x²+y²)-2x²]/(x²+y²)²=(-x²+y²)/(x²+y²)²;
∂z/∂y=y/(x²+y²); ∂²z/∂y²=[(x²+y²)-2y²]/(x²+y²)²=(x²-y²)/(x²+y²)²;
∴∂²z/∂x²+ ∂²z/∂y²=(-x²+y²)/(x²+y²)²+(x²-y²)/(x²+y²)²=0;
∂z/∂x=x/(x²+y²); ∂²z/∂x²=[(x²+y²)-2x²]/(x²+y²)²=(-x²+y²)/(x²+y²)²;
∂z/∂y=y/(x²+y²); ∂²z/∂y²=[(x²+y²)-2y²]/(x²+y²)²=(x²-y²)/(x²+y²)²;
∴∂²z/∂x²+ ∂²z/∂y²=(-x²+y²)/(x²+y²)²+(x²-y²)/(x²+y²)²=0;
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询