球是圆x^2+y^2=R^2绕x轴旋转得到的几何体。
在-R≤x≤R处,垂直于x轴的
弦长y=√(R^2-x^2)
此处取底面半径r=y,高h=dx的微元体,
则球的体积元、
表面积元分别为微元体(r=y,h=dx的
圆柱体)的体积和侧面积∴
dS=2πydx,
dV=πy^2dx
∴S=∫(-R,R)2πydx=∫(-R,R)2π√(R^2-x^2)dx=4πR^2,
V=∫(-R,R)π(y^2)dx=∫(-R,R)π(R^2-x^2)dx=4π/3*(R^3)
(
定积分的具体计算比较简单,自己算算就好了)