求证1²+2²+3²+……+n²=(1/6*n(n+1)(2n+1))/n(n为正整数
3个回答
展开全部
立方差
n^3-(n-1)^3=1*[n^2+(n-1)^2+n(n-1)]
=n^2+(n-1)^2+n^2-n
=2*n^2+(n-1)^2-n
2^3-1^3=2*2^2+1^2-2
3^3-2^3=2*3^2+2^2-3
4^3-3^3=2*4^2+3^2-4
......
n^3-(n-1)^3=2*n^2+(n-1)^2-n
各式相加
n^3-1^3=2*(2^2+3^2+...+n^2)+[1^2+2^2+...+(n-1)^2]-(2+3+4+...+n)
n^3-1=2*(1^2+2^2+3^2+...+n^2)-2+[1^2+2^2+...+(n-1)^2+n^2]-n^2-(2+3+4+...+n)
n^3-1=3*(1^2+2^2+3^2+...+n^2)-2-n^2-(1+2+3+...+n)+1
n^3-1=3(1^2+2^2+...+n^2)-1-n^2-n(n+1)/2
3(1^2+2^2+...+n^2)=n^3+n^2+n(n+1)/2=(n/2)(2n^2+2n+n+1)
=(n/2)(n+1)(2n+1)
1^2+2^2+3^2+...+n^2=n(n+1)(2n+1)/6
n^3-(n-1)^3=1*[n^2+(n-1)^2+n(n-1)]
=n^2+(n-1)^2+n^2-n
=2*n^2+(n-1)^2-n
2^3-1^3=2*2^2+1^2-2
3^3-2^3=2*3^2+2^2-3
4^3-3^3=2*4^2+3^2-4
......
n^3-(n-1)^3=2*n^2+(n-1)^2-n
各式相加
n^3-1^3=2*(2^2+3^2+...+n^2)+[1^2+2^2+...+(n-1)^2]-(2+3+4+...+n)
n^3-1=2*(1^2+2^2+3^2+...+n^2)-2+[1^2+2^2+...+(n-1)^2+n^2]-n^2-(2+3+4+...+n)
n^3-1=3*(1^2+2^2+3^2+...+n^2)-2-n^2-(1+2+3+...+n)+1
n^3-1=3(1^2+2^2+...+n^2)-1-n^2-n(n+1)/2
3(1^2+2^2+...+n^2)=n^3+n^2+n(n+1)/2=(n/2)(2n^2+2n+n+1)
=(n/2)(n+1)(2n+1)
1^2+2^2+3^2+...+n^2=n(n+1)(2n+1)/6
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
n n n n
∑[﹙k+1﹚³-k³]=∑﹙3k²+3k+1﹚=3∑k²+3∑k+n=3﹙1²+2²+…n²﹚+3/2n﹙n+1﹚+n
K=1 k=1 k=1 k=1
n
∑[﹙k+1﹚³-k³]=﹙n+1﹚³-1³=n³+3n²+3n
k=1
∴3﹙1²+2²+…n²﹚+3/2n﹙n+1﹚+n=n³+3n²+3n
3﹙1²+2²+…n²﹚=n³+3/2n²+1/2n=½n﹙2n²+3n+1﹚=½n﹙n+1﹚﹙2n+1﹚
∴1²+2²+…n²=1/6n﹙n+1﹚﹙2n+1﹚
∑[﹙k+1﹚³-k³]=∑﹙3k²+3k+1﹚=3∑k²+3∑k+n=3﹙1²+2²+…n²﹚+3/2n﹙n+1﹚+n
K=1 k=1 k=1 k=1
n
∑[﹙k+1﹚³-k³]=﹙n+1﹚³-1³=n³+3n²+3n
k=1
∴3﹙1²+2²+…n²﹚+3/2n﹙n+1﹚+n=n³+3n²+3n
3﹙1²+2²+…n²﹚=n³+3/2n²+1/2n=½n﹙2n²+3n+1﹚=½n﹙n+1﹚﹙2n+1﹚
∴1²+2²+…n²=1/6n﹙n+1﹚﹙2n+1﹚
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
数学归纳法
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询