三角函数的和差公式是如何推导出来的?
2个回答
展开全部
由Euler公式:e^(iα)=cosα+isinαe^(iβ)=cosβ+isinβ上述两式相乘左边:[e^(iα)][e^(iβ)]=e^[i(α+β)]=cos(α+β)+isin(α+β)右边:(cosα+isinα)(cosβ+isinβ)=(cosαcosβ-sinαsinβ)+i(cosαsinβ+sinαcosβ)根据复数相等的性质,实部等于实部,虚部等于虚部;可得cos(α+β)=cosαcosβ-sinαsinβsin(α+β)=sinαcosβ+cosαsinβ再根据正弦函数余弦函数的奇偶性将β换成-β可得cos(α-β)=cosαcosβ+sinαsinβsin(α-β)=sinαcosβ-cosαsinβ
由上述公式,还可以得到cos(α+β)+cos(α-β)=2cosαcosβcos(α+β)-cos(α-β)=-2sinαsinβsin(α+β)+sin(α-β)=2sinαcosβ令θ=α+β,ψ=α-β;则α=(θ+ψ)/2,β=(θ-ψ)/2作替换可得cosθ+cosψ=2cos[(θ+ψ)/2]cos[(θ-ψ)/2]cosψ-cosθ=2sin[(θ+ψ)/2]sin[(θ-ψ)/2]sinθ+sinψ=2sin[(θ-ψ)/2]cos[(θ-ψ)/2]
由上述公式,还可以得到cos(α+β)+cos(α-β)=2cosαcosβcos(α+β)-cos(α-β)=-2sinαsinβsin(α+β)+sin(α-β)=2sinαcosβ令θ=α+β,ψ=α-β;则α=(θ+ψ)/2,β=(θ-ψ)/2作替换可得cosθ+cosψ=2cos[(θ+ψ)/2]cos[(θ-ψ)/2]cosψ-cosθ=2sin[(θ+ψ)/2]sin[(θ-ψ)/2]sinθ+sinψ=2sin[(θ-ψ)/2]cos[(θ-ψ)/2]
展开全部
sin
α+sin
β=2sin[(α+β)/2]·cos[(α-β)/2]的证明过程
因为
sin(α+β)=sin
αcos
β+cos
αsin
β,
sin(α-β)=sin
αcos
β-cos
αsin
β,
将以上两式的左右两边分别相加,得
sin(α+β)+sin(α-β)=2sin
αcos
β,
设
α+β=θ,α-β=φ
那么
α=(θ+φ)/2,
β=(θ-φ)/2
把α,β的值代入,即得
sin
θ+sin
φ=2sin(θ+φ)/2
cos(θ-φ)/2
[编辑本段]正切的和差化积
tanα±tanβ=sin(α±β)/(cosα·cosβ)(附证明)
cotα±cotβ=sin(β±α)/(sinα·sinβ)
tanα+cotβ=cos(α-β)/(cosα·sinβ)
tanα-cotβ=-cos(α+β)/(cosα·sinβ)
证明:左边=tanα±tanβ=sinα/cosα±sinβ/cosβ
=(sinα·cosβ±cosα·sinβ)/(cosα·cosβ)
=sin(α±β)/(cosα·cosβ)=右边
∴等式成立
α+sin
β=2sin[(α+β)/2]·cos[(α-β)/2]的证明过程
因为
sin(α+β)=sin
αcos
β+cos
αsin
β,
sin(α-β)=sin
αcos
β-cos
αsin
β,
将以上两式的左右两边分别相加,得
sin(α+β)+sin(α-β)=2sin
αcos
β,
设
α+β=θ,α-β=φ
那么
α=(θ+φ)/2,
β=(θ-φ)/2
把α,β的值代入,即得
sin
θ+sin
φ=2sin(θ+φ)/2
cos(θ-φ)/2
[编辑本段]正切的和差化积
tanα±tanβ=sin(α±β)/(cosα·cosβ)(附证明)
cotα±cotβ=sin(β±α)/(sinα·sinβ)
tanα+cotβ=cos(α-β)/(cosα·sinβ)
tanα-cotβ=-cos(α+β)/(cosα·sinβ)
证明:左边=tanα±tanβ=sinα/cosα±sinβ/cosβ
=(sinα·cosβ±cosα·sinβ)/(cosα·cosβ)
=sin(α±β)/(cosα·cosβ)=右边
∴等式成立
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |