三角函数的积化和差公式是什么,怎么推导出来的。

时空散翼
2010-06-01 · TA获得超过194个赞
知道答主
回答量:87
采纳率:0%
帮助的人:120万
展开全部
http://baike.baidu.com/view/383748.htm?fr=ala0_1正弦、余弦的和差化积

指高中数学三角函数部分的一组恒等式
sin α+sin β=2sin[(α+β)/2]·cos[(α-β)/2]
sin α-sin β=2cos[(α+β)/2]·sin[(α-β)/2]
cos α+cos β=2cos[(α+β)/2]·cos[(α-β)/2]
cos α-cos β=-2sin[(α+β)/2]·sin[(α-β)/2]

以上四组公式可以由积化和差公式推导得到
证明过程

sin α+sin β=2sin[(α+β)/2]·cos[(α-β)/2]的证明过程
因为
sin(α+β)=sin αcos β+cos αsin β,
sin(α-β)=sin αcos β-cos αsin β,
将以上两式的左右两边分别相加,得
sin(α+β)+sin(α-β)=2sin αcos β,
设 α+β=θ,α-β=φ
那么
α=(θ+φ)/2, β=(θ-φ)/2
把α,β的值代入,即得
sin θ+sin φ=2sin(θ+φ)/2 cos(θ-φ)/2
[编辑本段]正切的和差化积

tanα±tanβ=sin(α±β)/(cosα·cosβ)(附证明)
cotα±cotβ=sin(β±α)/(sinα·sinβ)
tanα+cotβ=cos(α-β)/(cosα·sinβ)
tanα-cotβ=-cos(α+β)/(cosα·sinβ)
证明:左边=tanα±tanβ=sinα/cosα±sinβ/cosβ
=(sinα·cosβ±cosα·sinβ)/(cosα·cosβ)
=sin(α±β)/(cosα·cosβ)=右边
∴等式成立

参考资料: http://baike.baidu.com/view/383748.htm?fr=ala0_1

闻痴琦藻
2019-01-16 · TA获得超过3万个赞
知道小有建树答主
回答量:1.1万
采纳率:30%
帮助的人:917万
展开全部
首先,我们知道sin(a
b)=sina*cosb
cosa*sinb,sin(a-b)=sina*cosb-cosa*sinb
我们把两式相加就得到sin(a
b)
sin(a-b)=2sina*cosb
所以,sina*cosb=(sin(a
b)
sin(a-b))/2
同理,若把两式相减,就得到cosa*sinb=(sin(a
b)-sin(a-b))/2
同样的,我们还知道cos(a
b)=cosa*cosb-sina*sinb,cos(a-b)=cosa*cosb
sina*sinb
所以,把两式相加,我们就可以得到cos(a
b)
cos(a-b)=2cosa*cosb
所以我们就得到,cosa*cosb=(cos(a
b)
cos(a-b))/2
同理,两式相减我们就得到sina*sinb=-(cos(a
b)-cos(a-b))/2
这样,我们就得到了积化和差的四个公式:
sina*cosb=(sin(a
b)
sin(a-b))/2
cosa*sinb=(sin(a
b)-sin(a-b))/2
cosa*cosb=(cos(a
b)
cos(a-b))/2
sina*sinb=-(cos(a
b)-cos(a-b))/2
好,有了积化和差的四个公式以后,我们只需一个变形,就可以得到和差化积的四个公式.我们把上述四个公式中的a
b设为x,a-b设为y,那么a=(x
y)/2,b=(x-y)/2
把a,b分别用x,y表示就可以得到和差化积的四个公式:
sinx
siny=2sin((x
y)/2)*cos((x-y)/2)
sinx-siny=2cos((x
y)/2)*sin((x-y)/2)
cosx
cosy=2cos((x
y)/2)*cos((x-y)/2)
cosx-cosy=-2sin((x
y)/2)*sin((x-y)/2)
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
梅令人高
2010-06-02
知道答主
回答量:24
采纳率:0%
帮助的人:0
展开全部
sinαsinβ=-[cos(α+β)-cos(α-β)]/2
cosαcosβ=[cos(α+β)+cos(α-β)]/2
sinαcosβ=[sin(α+β)+sin(α-β)]/2
cosa sinβ=[sin(α+β)-sin(α-β)]/2

积化和差公式是由正弦或余弦的和角公式与差角公式通过加减运算推导而得。推导过程:积化和差公式sin(α+β)=sinαcosβ+cosαsinβ,sin(α-β)=sinαcosβ-cosαsinβ 把两式相加得到:sin(α+β)+sin(α-β)=2sinαcosβ 所以,sinαcosβ=[sin(α+β)+sin(α-β)]/2 同理,把两式相减,得到:cosαsinβ=[sin(α+β)-sin(α-β)]/2 cos(α+β)=cosαcosβ-sinαsinβ,cos(α-β)=cosαcosβ+sinαsinβ 把两式相加,得到:cos(α+β)+cos(α-β)=2cosαcosβ 所以,cosαcosβ=[cos(α+β)+cos(α-β)]/2 同理,两式相减,得到sinαsinβ=-[cos(α+β)-cos(α-β)]/2 这样,得到了积化和差的四个公式: sinαcosβ=[sin(α+β)+sin(α-β)]/2 cosαcosβ=[cos(α+β)+cos(α-β)]/2 sinαsinβ=-[cos(α+β)-cos(α-β)]/2 cosαsinβ=[sin(α+β)-sin(α-β)]/2

参考资料: 点拨

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
GonkeeJKoro
2010-06-01 · TA获得超过169个赞
知道答主
回答量:110
采纳率:0%
帮助的人:122万
展开全部
(1)sin(x+y)=sinxcosy+cosxsiny
(2)sin(x-y)=sinxcosy-cosxsiny
(3)cos(x+y)=cosxcosy-sinxsiny
(4)cos(x-y)=cosxcosy+sinxsiny
由(1)+(2)和(1)-(2)得
sinxcosy=(1/2)[sin(x+y)+sin(x-y)]
cosxsiny=(1/2)[sin(x+y)-sin(x-y)]
由(3)+(4)和(3)-(4)得
cosxcosy=(1/2)[cos(x+y)+cos(x-y)]
sinxsiny=-(1/2)[cos(x+y)-cos(x-y)]
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式