已知二次函数f(x)=ax²+bx满足f(1+x)=f(1-x)且方程f(x)=x有两个相等实数根
若函数f(x)在定义域为[m,n]上对应的值域为[2m,2n](1)求m,n的值(2)求f(x)在(-2,2]上的值域...
若函数f(x)在定义域为[m,n]上对应的值域为[2m,2n](1)求m,n的值(2)求f(x)在(-2,2]上的值域
展开
2个回答
展开全部
f(x)=x有两个相等实数根
ax²+bx-x=0
b-1=0 b=1
f(x)=ax²+x
f(1+x)=f(1-x)
a(1+x)²+1+x=a(1-x)²+1-x
(2a+1)x=0
a=-1/2
f(x)=-x²/2+x
1
f(m)=-m²/2+m=2m
m=0 m=-2
2
f(x)=-(x+1)²/2+1/2
f(-1)=1/2 是最大值
f(2)=-4
f(-2)=0
值域[-4,1/2]
ax²+bx-x=0
b-1=0 b=1
f(x)=ax²+x
f(1+x)=f(1-x)
a(1+x)²+1+x=a(1-x)²+1-x
(2a+1)x=0
a=-1/2
f(x)=-x²/2+x
1
f(m)=-m²/2+m=2m
m=0 m=-2
2
f(x)=-(x+1)²/2+1/2
f(-1)=1/2 是最大值
f(2)=-4
f(-2)=0
值域[-4,1/2]
更多追问追答
追问
http://zhidao.baidu.com/question/223592696.html看看这个吧,答案不一样???
a(1+x)²+1+x=a(1-x)²+1-x
是什么意思?
展开全部
f(1+x)=f(1-x)
a(1+x)²+b(1+x)=a(1-x)²+b(1-x)
a+2ax+ax²+b+bx=a-2ax+ax²+b-bx
(4a+2b)x=0
所以2a+b=0
又:f(x)=x即ax²+(b-1)x=0有两个相等实数根
所以Δ=(b-1)²=0
所以b=1
所以a=-1/2
所以f(x)=-(1/2)x²+x=-(1/2)(x-1)²+1/2
f(x)在定义域为[m,n]上对应的值域为[2m,2n]
情况1:n<1
此时最小值为f(m)=2m,最大值为f(n)=2n
解得m=-2,n=0
情况2:m≤1,n≥1
此时最大值为f(1)=1/2,最小值为f(m)与f(n)中较小的一个
于是2n=1/2,n=1/2,不符合前提
情况3:m>1
此时最小值为f(n)=2m,最大值为f(m)=2n
解得m=-2或m=0,不符合前提
综合情况1、2、3,m=-2,n=0
f(-2)=-4
f(1)=1/2
所以f(x)在(-2,2]上的值域为(-4,1/2]
a(1+x)²+b(1+x)=a(1-x)²+b(1-x)
a+2ax+ax²+b+bx=a-2ax+ax²+b-bx
(4a+2b)x=0
所以2a+b=0
又:f(x)=x即ax²+(b-1)x=0有两个相等实数根
所以Δ=(b-1)²=0
所以b=1
所以a=-1/2
所以f(x)=-(1/2)x²+x=-(1/2)(x-1)²+1/2
f(x)在定义域为[m,n]上对应的值域为[2m,2n]
情况1:n<1
此时最小值为f(m)=2m,最大值为f(n)=2n
解得m=-2,n=0
情况2:m≤1,n≥1
此时最大值为f(1)=1/2,最小值为f(m)与f(n)中较小的一个
于是2n=1/2,n=1/2,不符合前提
情况3:m>1
此时最小值为f(n)=2m,最大值为f(m)=2n
解得m=-2或m=0,不符合前提
综合情况1、2、3,m=-2,n=0
f(-2)=-4
f(1)=1/2
所以f(x)在(-2,2]上的值域为(-4,1/2]
追问
所以f(x)=-(1/2)x²+x=-(1/2)(x-1)²+1/2能说细点吗
追答
f(x)
=-(1/2)x²+x
=-(1/2)x²+x-1/2+1/2
=-(1/2)(x²-2x+1)+1/2
=-(1/2)(x-1)²+1/2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询