不定积分∫√(9-x^2)dx
1个回答
展开全部
令x=3sint,则dx=3costdt.
t=arcsin(x/3).sin2t=2sintcost
∫√(9-x^2)dx=∫[√(9-9sin²t)]3(cost)dt=∫9cos²tdt=9∫(1/2)[1+cos(2t)]dt=9∫(1/4)[1+cos(2t)]d(2t)
=(9/4)[2t+sin2t]+C,(C为任意常数).
∫√(9-x^2)dx=(9/4)[2arcsin(x/3)+2(x/3)√(1-(x/3)²)]+C
=(9/2)arcsin(x/3)+(1/2)x)√[(3²-(x²)]+C,(C为任意常数).
t=arcsin(x/3).sin2t=2sintcost
∫√(9-x^2)dx=∫[√(9-9sin²t)]3(cost)dt=∫9cos²tdt=9∫(1/2)[1+cos(2t)]dt=9∫(1/4)[1+cos(2t)]d(2t)
=(9/4)[2t+sin2t]+C,(C为任意常数).
∫√(9-x^2)dx=(9/4)[2arcsin(x/3)+2(x/3)√(1-(x/3)²)]+C
=(9/2)arcsin(x/3)+(1/2)x)√[(3²-(x²)]+C,(C为任意常数).
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询