求定积分∫1/x²√(1+x²) dx上限√3下限1

 我来答
Dilraba学长
高粉答主

2019-05-10 · 听从你心 爱你所爱 无问西东
Dilraba学长
采纳数:1107 获赞数:411011

向TA提问 私信TA
展开全部

答案是√2 - 2/√3

解题过程如下:

∫[1→√3] 1/[x²√(1+x²)] dx

令x=tanu,则√(1+x²)=secu,dx=sec²udu,u:π/4→π/3

=∫[π/4→π/3] [1/(tan²usecu)](sec²u) du

=∫[π/4→π/3] secu/tan²u du

=∫[π/4→π/3] cosu/sin²u du

=∫[π/4→π/3] 1/sin²u dsinu

=-1/sinu ||[π/4→π/3]

=√2 - 2/√3

定积分是积分的一种,是函数f(x)在区间[a,b]上积分和的极限。

这里应注意定积分与不定积分之间的关系:若定积分存在,则它是一个具体的数值(曲边梯形的面积),而不定积分是一个函数表达式

扩展资料

定理

一般定理

定理1:设f(x)在区间[a,b]上连续,则f(x)在[a,b]上可积。

定理2:设f(x)区间[a,b]上有界,且只有有限个间断点,则f(x)在[a,b]上可积。

定理3:设f(x)在区间[a,b]上单调,则f(x)在[a,b]上可积。

牛顿-莱布尼茨公式

定积分与不定积分看起来风马牛不相及,但是由于一个数学上重要的理论的支撑,使得它们有了本质的密切关系。把一个图形无限细分再累加,这似乎是不可能的事情,但是由于这个理论,可以转化为计算积分。

丘冷萱Ad
推荐于2017-12-15 · TA获得超过4.8万个赞
知道大有可为答主
回答量:5205
采纳率:37%
帮助的人:3834万
展开全部
∫[1→√3] 1/[x²√(1+x²)] dx
令x=tanu,则√(1+x²)=secu,dx=sec²udu,u:π/4→π/3
=∫[π/4→π/3] [1/(tan²usecu)](sec²u) du
=∫[π/4→π/3] secu/tan²u du
=∫[π/4→π/3] cosu/sin²u du
=∫[π/4→π/3] 1/sin²u dsinu
=-1/sinu ||[π/4→π/3]
=√2 - 2/√3

【数学之美】团队为您解答,若有不懂请追问,如果解决问题请点下面的“选为满意答案”。
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式