
x^2*(cosx)^2的积分
x^2*(cosx)^2的积分为1/6 x³+1/4x² *sin2x+1/4cos2x-1/8sin2x+C
解: ∫( x² cos²x)dx= ∫( x² (cos2x+1)/2)dx
=1/2∫( x² cos2x+x²)dx
=1/2∫x²dx+1/2∫ x² cos2xdx
=1/6 x³+1/2∫ x² cos2xdx
=1/6 x³+1/4∫ x² dsin2x
=1/6 x³+1/4x² *sin2x-1/4∫sin2x d x²
=1/6 x³+1/4x² *sin2x-1/2∫xsin2x d x
=1/6 x³+1/4x² *sin2x+1/4∫x d cos2x
=1/6 x³+1/4x² *sin2x+1/4cos2x-1/4∫cos2x d x
=1/6 x³+1/4x² *sin2x+1/4cos2x-1/8sin2x+C
扩展资料:
1、分部积分法是微积分学中的一类重要的、基本的计算积分的方法。它的主要原理是将不易直接求结果的积分形式,转化为等价的易求出结果的积分形式的。
2、分部积分法的公式为:∫μ(x)v'(x)dx=∫μ(x)dv(x)=μ(x)*v(x)-∫v(x)dμ(x)
3、分部积分计算例题:
(1)∫xcosxdx=∫xdsinx=xsinx-∫sinxdx=xsinx+cosx+C
(2)∫xarctanxdx=∫arctanxd(x²/2)
=x²/2*arctanx-1/2∫x²darctanx
=x²/2*arctanx-1/2∫x²/(x²+1)dx
=x²/2*arctanx-1/2∫dx+1/2∫1/(x²+1)dx
=x²/2*arctanx-1/2∫dx+1/2arctanx+C
参考资料来源:百度百科-积分
参考资料来源:百度百科-分部积分法
∫(x^2)·(cosx)^2 dx
=1/2·∫(x^2)(cos2x+1) dx
=1/2·∫(x^2)cos2x dx+1/2·∫x^2 dx
=1/2[1/2·(x^2)sin2x-1/2∫2x·sin2xdx]+(x^3)/6
=1/4·(x^2)sin2x-∫x·sin2xdx+(x^3)/6
=1/4·(x^2)sin2x+1/2·xcos2x-1/2·∫cos2xdx+(x^3)/6
=1/4·(x^2)sin2x+1/2·xcos2x-1/4·sin2x+(x^3)/6+C