已知抛物线y=x^2-(2m-1)x+m^2-m-2

(1)证明:抛物线与x轴有两个不同的公共点。(2)抛物线与x轴交于A、B两点,且在y轴同侧,与y轴交于点C,若S△ABC=6,求抛物线的解析式。... (1)证明:抛物线与x轴有两个不同的公共点。
(2)抛物线与x轴交于A、B两点,且在y轴同侧,与y轴交于点C,若S△ABC=6,求抛物线的解析式。
展开
大肚蛙8
2012-12-05
知道答主
回答量:13
采纳率:0%
帮助的人:13.9万
展开全部
(1)若抛物线与X轴有交点,则可得Y=0=x^2-(2m-1)x+m^2-m-2,将系数带入公式Δ=b^2-4ac,可得Δ=9>0,可知,解方程后X有两个实数值,说明抛物线与X轴有两个交点。
(2)由(1)解方程,得X=(2m-1+3)/2,和X=(2m-1-3)/2,
抛物线与Y轴相交,且与x轴交于A、B两点在y轴同侧,又系数a=1>0抛物线开口向上,则可知交点坐标X=0,Y>0,带入抛物线公式得,Y=m^2-m-2>0,即△ABC的高为m^2-m-2,S△ABC=6={(m^2-m-2)*{【(2m-1+3)/2】-【(2m-1-3)/2】}/2,化简,可得4=m^2-m-2,解方程可得m=3或-2
百度网友aa96858
推荐于2016-12-01 · TA获得超过8429个赞
知道大有可为答主
回答量:2888
采纳率:0%
帮助的人:2317万
展开全部
类别式=(2m-1)^2-4(m^2-m-2)=9>0
所以,抛物线与x轴有两个不同的公共点
1/2*AB*OC=6
AB*OC=12,AB=(x1-x2)绝对值,OC=m^2-m-2
√[(x1+x2)^2-4x1x2]*(m^2-m-2)=12,x1+x2=2m-1,x1x2=m^2-m-2
√[(2m-1)^2-4(m^2-m-2)]]*(m^2-m-2)=12
m^2-m-6=0
m=3,或m= -1(舍去)
y=x^2-(2*3-1)x+3^2-3-2=x^2-5x+4
y=x^2-5x+4由对称性可知,
另一条抛物线的解析式为y=x^2+5x+4
所求抛物线的解析式为:y=x^2-5x+4或y=x^2+5x+4
本回答被提问者和网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
宝宝爱数学free
2012-12-06 · TA获得超过130个赞
知道小有建树答主
回答量:243
采纳率:100%
帮助的人:106万
展开全部
(1)判别式大于0恒成立,所以有两个不同的交点
(2)作图吧,三角形的面积用M表示,建立方程,求得M值
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式