线性代数证明题
2个回答
展开全部
知识点:
1.(AB)^T=B^TA^T
2.(A^T)^-1=(A^-1)^T
3.A是正交矩阵, 则A^T=A^-1
4.若AB=BA且A可逆, 则 A^-1B=BA^-1
证明: B^T=[(A+I)(A-I)^-1]^T
= (A-I)^-1^T(A+I)^T ----知识点1
= (A-I)^T^-1(A+I)^T --知识点2
= (A^T-I^T)^-1(A^T+I^T)
= (A^-1-I)^-1(A^-1+I) --知识点3
= (A^-1-I)^-1(A^-1A)(A^-1+I)
= (I-A)^-1(I+A)
= -(A-I)^-1(A+I)
= -(A+I)(A-I)^-1 --知识点4
= -B.
所以B是反对称矩阵.
1.(AB)^T=B^TA^T
2.(A^T)^-1=(A^-1)^T
3.A是正交矩阵, 则A^T=A^-1
4.若AB=BA且A可逆, 则 A^-1B=BA^-1
证明: B^T=[(A+I)(A-I)^-1]^T
= (A-I)^-1^T(A+I)^T ----知识点1
= (A-I)^T^-1(A+I)^T --知识点2
= (A^T-I^T)^-1(A^T+I^T)
= (A^-1-I)^-1(A^-1+I) --知识点3
= (A^-1-I)^-1(A^-1A)(A^-1+I)
= (I-A)^-1(I+A)
= -(A-I)^-1(A+I)
= -(A+I)(A-I)^-1 --知识点4
= -B.
所以B是反对称矩阵.
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |