1/三次根号下x的原函数
1个回答
展开全部
变元
x=cos^2
t
dx=-2cost
sint
dt
假设t在
第一象限
1-x=1-cos^2
t=sin^2
t
根号
(1-x/x)=根号(tan^2
t)=tan
t
根号下(1-x/x)的
不定积分
=∫
tan
t*-2cost
sin
t
dt
=∫
-2sin^2
t
dt
=∫
(cos
2t
-1)
dt
半角公式
=(sin2t)/2-t+c
cost=根号x,sint=根号(1-cost^2)=根号(1-x)
t=arc
cos
(根号x)
(sin2t)/2=sintcost=根号(x(1-x))
所以
根号下(1-x/x)的不定积分=根号(x(1-x))-arc
cos
(根号x)+c
x=cos^2
t
dx=-2cost
sint
dt
假设t在
第一象限
1-x=1-cos^2
t=sin^2
t
根号
(1-x/x)=根号(tan^2
t)=tan
t
根号下(1-x/x)的
不定积分
=∫
tan
t*-2cost
sin
t
dt
=∫
-2sin^2
t
dt
=∫
(cos
2t
-1)
dt
半角公式
=(sin2t)/2-t+c
cost=根号x,sint=根号(1-cost^2)=根号(1-x)
t=arc
cos
(根号x)
(sin2t)/2=sintcost=根号(x(1-x))
所以
根号下(1-x/x)的不定积分=根号(x(1-x))-arc
cos
(根号x)+c
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
泰科博思
2024-12-27 广告
2024-12-27 广告
CASTEP是一款基于第一性原理计算方法的材料模拟软件,其优势包括:1.高精度。CASTEP使用密度泛函理论(DFT)进行第一性原理计算。这种基于波函数的方法不依赖于实验数据,可以获得非常高的准确性。2.广泛适用性。CASTEP适用于多种材...
点击进入详情页
本回答由泰科博思提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询