三角形三条角平分线的交点叫什么

 我来答
舒适还明净的海鸥i
2022-06-08 · TA获得超过1.7万个赞
知道小有建树答主
回答量:380
采纳率:0%
帮助的人:70.1万
展开全部
三角形三条内角平分线的交点叫三角形的内心。即内切圆的圆心。内心是三角形角平分线交点的原理:经圆外一点作圆的两条切线,这一点与圆心的连线平分两条切线的夹角(通过全等易证明)。

相关性质

设△ABC的内切圆为☉O(半径r),角A、B、C的对边分别为a、b、c,p=(a+b+c)/2,三角形内心为I

1、三角形的三个角平分线交于一点,该点即为三角形的内心。

2、三角形的内心与三角形位置关系:现有AI交BC于点D;BI交CA于点E;CI交AB于点F,三角形内接圆分别交BC,CA,AB于X,Y,Z。

(i)IX:IY:OZ=1:1:1

(ii)BD:DC=b:c;CE:EA=c:a;AF:FB=a:b

(iii)BX:XC=(p-b):(p-c);CY:YA=(p-c):(p-a);AZ:ZB=(p-a):(p-b)

(iv)AI:BI:CI=(1/sin(A/2)):(1/sin(B/2)):(1/sin(C/2))

(v)△IBC,△ICA,△IAB面积比为a:b:c

3、r=S/p。

4、△ABC中,∠C=90°,r=(a+b-c)/2。

5、∠BOC=90°+∠A/2。

6、点O是平面ABC上任意一点,点O是△ABC内心的充要条件是:

a(向量OA)+b(向量OB)+c(向量OC)=向量0。

7、点O是平面ABC上任意一点,点I是△ABC内心的充要条件是:

向量OI=[a(向量OA)+b(向量OB)+c(向量OC)]/(a+b+c)。

8、△ABC中,A(x1,y1),B(x2,y2),C(x3,y3),那么△ABC内心I的坐标是:

[ax1/(a+b+c)+bx2/(a+b+c)+cx3/(a+b+c),ay1/(a+b+c)+by2/(a+b+c)+cy3/(a+b+c)]。

9、(欧拉定理)△ABC中,R和r分别为外接圆为和内切圆的半径,O和I分别为其外心和内心,则OI2=R2-2Rr。

10、内角平分线分三边长度关系:如图:△ABC中,AD是∠A的角平分线,D在BC上,a、b、c分别是∠A、∠B、∠C的对边,d=AD。设R1是△ABD的外接圆半径,R2是△ACD的外接圆半径,则有:BD/CD=AB/AC

证明:由正弦定理得

b/sinB=c/sinC,d=2R1sinB=2R2sinC,

∴R1/R2=sinC/sinB=c/b.

又BD=2R1sinBAD, CD=2R2sinCAD,∠CAD=∠BAD,

∴BD/CD=R1/R2=c/b=AB/AC
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式