∫根号(x-1)lnxdx用换元法和分部积分法求
展开全部
∫ √(x-1) .lnx dx
=(2/3)∫ lnx d(x-1)^(3/2)
=(2/3)(x-1)^(3/2). lnx -(2/3)∫ [(x-1)^(3/2) /x ] dx
=(2/3)(x-1)^(3/2). lnx -(2/3)∫ [ √(x-1) - √(x-1) /x ] dx
=(2/3)(x-1)^(3/2). lnx - (x-1)^(3/2) + (3/2)∫[ √(x-1) /x ] dx
let
x= (secy)^2
dx = 2tany (secy)^2 dy
∫[ √(x-1) /x ] dx
=2∫ (tany)^2 dy
=2( tany - y ) + C'
=2 {√(x-1) - arctan[√(x-1)] } + C'
∫ √(x-1) .lnx dx
=(2/3)(x-1)^(3/2). lnx - (x-1)^(3/2) + (3/2)∫[ √(x-1) /x ] dx
=(2/3)(x-1)^(3/2). lnx - (x-1)^(3/2) + 3{√(x-1) - arctan[√(x-1)] } + C
=(2/3)∫ lnx d(x-1)^(3/2)
=(2/3)(x-1)^(3/2). lnx -(2/3)∫ [(x-1)^(3/2) /x ] dx
=(2/3)(x-1)^(3/2). lnx -(2/3)∫ [ √(x-1) - √(x-1) /x ] dx
=(2/3)(x-1)^(3/2). lnx - (x-1)^(3/2) + (3/2)∫[ √(x-1) /x ] dx
let
x= (secy)^2
dx = 2tany (secy)^2 dy
∫[ √(x-1) /x ] dx
=2∫ (tany)^2 dy
=2( tany - y ) + C'
=2 {√(x-1) - arctan[√(x-1)] } + C'
∫ √(x-1) .lnx dx
=(2/3)(x-1)^(3/2). lnx - (x-1)^(3/2) + (3/2)∫[ √(x-1) /x ] dx
=(2/3)(x-1)^(3/2). lnx - (x-1)^(3/2) + 3{√(x-1) - arctan[√(x-1)] } + C
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询