1已知 f(x)=(3x+1)/(4x+2) 求f(x)值域
展开全部
f(x) = (3x+1)/(4x+2) = (3x+3/2 - 1/2)/(4x+2)
= (3x+3/2)/(4x+2) - (1/2)/(4x+2) = 3/4 - 1/(8x+4)
lim<x→∞>[3/4 - 1/(8x+4)] = 3/4
lim<x→(-1/2)->[3/4 - 1/(8x+4)] = +∞
lim<x→(-1/2)+>[3/4 - 1/(8x+4)] = -∞
f(x)∈ (-∞, 3/4)∪(3/4, +∞)
= (3x+3/2)/(4x+2) - (1/2)/(4x+2) = 3/4 - 1/(8x+4)
lim<x→∞>[3/4 - 1/(8x+4)] = 3/4
lim<x→(-1/2)->[3/4 - 1/(8x+4)] = +∞
lim<x→(-1/2)+>[3/4 - 1/(8x+4)] = -∞
f(x)∈ (-∞, 3/4)∪(3/4, +∞)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询