设A,B都是n阶正交矩阵,且|AB|<0,证明:|A+B|=0

lry31383
高粉答主

2012-12-09 · 说的都是干货,快来关注
知道大有可为答主
回答量:2.5万
采纳率:91%
帮助的人:1.6亿
展开全部
证: 因为 正交矩阵的行列式是 正负1
再由 |AB|<0 知 |A|,|B| 必一正一负, 即有 |A||B|=-1.

所以 -|A+B|
= |A||A+B||B|
= |A(A+B)B|
= |AAB+ABB|
= |B+A|
= |A+B|
所以有 2|A+B| = 0
所以 |A+B| = 0.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式