已知函式f(x)=2根号3sinxcosx+2cos方x-1(x属于R) 求函式f(x)的单调递减区间
已知函式f(x)=2根号3sinxcosx+2cos方x-1(x属于R) 求函式f(x)的单调递减区间
f(x)=2√3sinxcosx+2cos²x-1=√3sin2x+cos2x=2sin(2x+π/6),则递减区间是:2kπ+π/2≤2x+π/6≤2kπ+3π/2,得:kπ+π/6≤x≤kπ+2π/3,则减区间是:[kπ+π/6,kπ+2π/3],其中k∈Z
!线上等!已知函式f(x)=2根号3sinxcosx+2cos^2x-1(x属于R),(1)求函式f(x)的单调递减区间,(2)若A是
f(x)=2√3sinxcosx+2(cosx)^2-1
=√3sin2x+cos2x
=2(sin2xcosπ/6+cos2xsinπ/6)
=2sin(2x+π/6),
2kπ+π/2≤2x+π/6≤2kπ+3π/2,单调递减,k∈Z,
函式f(x)的单调递减区间:kπ+π/6≤x≤kπ+2π/3,k∈Z
∴x∈[kπ+π/6,kπ+2π/3],k∈Z。
已知函式f(x)=2根号3sinxcosx+2cos^2x-1,求f(x)的单调递减区间
f(x)=2√3sinxcosx+2cos²x-1
=√3sin2x+cos2x
=2(√3/2sin2x+1/2cos2x)
=2sin(2x+π/6)
令2x+π/6=z
sinz的单调递减区间为[2kπ+π/2,2kπ+3π/2](k∈Z)
∴2kπ+π/2≤2x+π/6≤2kπ+3π/2
∴kπ+π/6≤x≤kπ+2π/3 (k∈Z)
∴f(x)在区间[kπ+π/6,kπ+2π/3](k∈Z)是单调递减
函式x=2根号3sinxcosx+2cos平方x-1 x属于r 函式x的单调递减 区间
f(x) = 2√3sinxcosx + 2cos^2x-1
= √3sin2x + cos2x
= 2(sin2xcosπ/6+cos2xsinπ/6)
= 2sin(2x+π/6)
2x+π/6 ∈(2kπ+π/2,2kπ+3π/2)时,单调减
∴单调递减区间(kπ+π/6,kπ+2π/3)
已知函式f(x)=2根号3sinxcosx+2cos^2x-1(x属于R),g(x)=f(x)的决定值。(1)求函式g(x)的单调递减区间;
f(x)=2根号3sinxcosx+2cos^2x-1
=√3 sin2x+cos2x
=2sin(2x+π/6)
kπ+π/2≤2x+π/6≤kπ+π,k∈Z
解出x得g(x)=|f(x)|的单减区间
f(A)=2sin(2A+π/6)=2/3
sin(2A+π/6)=1/3
0<2A<π
π/6<2A+π/6<7π/6
2A+π/6=π-arc sin(1/3)
2A=5π-arc sin(1/3)
两边取正弦
sin2A=(2√2+√3)/6
求f(x)=2根号3sinxcosx+2cos^2x-1的单区,关键是先化成一个角的一个函式的一次形式.
专门针对如何求三角函式的奇偶性、周期、单调性、还有最值。配有例题
欢迎访问我的BLOG, 可以令你豁然开朗.
三角函式salon(43)三角函式的解题思路
:hi.baidu./ok%B0%C9/blog/item/33d3ca02a0cdf708fa930b.
已知函式f(x)=2cos²x+2根号3sinxcosx.求 (1)函式f(x)的周期。 (2)函式f(x)的单调递减区间。
f(x)=2cos²x+2根号3sinxcosx
= (cos2x+1) + √3sin2x
= √3sin2x + cos2x + 1
= 2(sin2xcosπ/6+cos2xsinπ/6) +1
= 2sin(2x+π/6) + 1
最小正周期 = 2π/2 = π
2x+π/6∈(2kπ+π/2,2kπ+3π/2),其中k∈Z时单调减
所以单调减区间:x∈(kπ+π/6,kπ+2π/3),其中k∈Z
x∈[0,π/2]时:
2x+π/6∈【π/3,4π/3】
其中,2x+π/6∈【π/3,π/2)时单调增,2x+π/6∈【π/2,4π/3)时单调减
∴单调增区间:x∈∈【π/12,π/6),单调减区间x∈【π/6,7π/12)
2x+π/6=π/2时,最大值f(x)max = 2+1 = 3
2x+π/6=4π/3时,最小值f(x)min = 2*(-√3/2)+1 = 1-√3
已知函式f(x)=2cosx*sin(x+π/3)-根号3sin^x+sinxcosx 1.求函式f(x)的单调递减区间
f(x)=2cosx*(1/2*sinx+√3/2*cosx)-√3sin²x+sinxcosx
=sinxcosx+√3*cos²x-√3sin²x+sinxcosx
=2sinxcosx+√3(cos²x-sin²x)
=sin2x+√3cos2x
=2(1/2*sin2x+√3/2*cos2x)
=2sin(2x+π/3)
(1)令2kπ+π/2≤2x+π/3≤2kπ+3π/2
解得:kπ+π/12≤x≤2kπ+7π/12
所以f(x)的单调递减区间集合为[kπ+π/12,2kπ+7π/12] (k∈Z)
(2)f(x-m)=2sin(2x-2m+π/3)
=2sin2x*cos(2m-π/3)-2cos2x*sin(2m-π/3)
要使f(x-m)是偶函式,那么只能存在cos2x的形式
所以cos(2m-π/3)=0,那么2m-π/3=kπ+π/2 (k∈Z)
所以m=kπ/2+5π/12>0
那么k>-5/6,那么取k=0时,m=5π/12是符合要求的最小正值
(这一题实际上就是“奇变偶不变”,所以直接就有2m-π/3必须是π/2的奇数倍)
已知函式f(x)=根号3sinxcosx+cos²x+1/2,x属于R,求f(x)的递减区间
f(x)=√3sinxcosx+cos²x+1/2=√3/2 sin2x+1/2(2cos²x-1)+1=√3/2 sin2x+1/2cos2x+1
=cosπ/6sin2x+sinπ/6cos2x+1=sin(π/6+2x)+1
f(x)的递减区间:
2kπ+π/2≤π/6+2x≤2kπ+3π/2
2kπ+π/3≤2x≤2kπ+4π/3
kπ+π/6≤x≤kπ+2π/3
已知函式f(x)=2根号3sinXcosX+2cos^2X-1求f(x)单调增区间
根号的括号到哪里啊?
要是到(3sinXcosX+2cos^2X)和到
根号(3sinXcosX+2cos^2X-1)。要是后一种结果简单一点:
根号里面化简得到 [3/2sin(2X)+cos(2X)]=(根号13)/2 X sin(2X+φ),其中sinφ=2/(根号13),cosφ=3/(根号13)
则sin(2X+φ)的单调增区间为[0°-φ/2+180°k,45°-φ/2+180°k]和[-45°-φ/2+180°k,0°-φ+180°k]。但是根号内sin(2X+φ)必须为非负数,所以区间只能为[0°-φ+180°k,45°-φ/2+180°k]
改成弧度的“官方语言”【kπ-arcsin(2/√13)/2, kπ+π/4-arcsin(2/√13)/2】,或者是
kπ-arcsin(2/√13)/2<=X<=kπ+π/4-arcsin(2/√13)/2.
如果括号到其他地方解答的方法一样,注意用倍角公式转化一下,而且根号里的数大于等于零就行了。