如图所示,在平面直角坐标系xOy内已知点A和点B的坐标分别为(0,6),(8,0),动点P从点A开始在线段AO上以每

如图所示,在平面直角坐标系xOy内已知点A和点B的坐标分别为(0,6),(8,0),动点P从点A开始在线段AO上以每秒1个单位长度的速度向点O移动,同时动点Q从点B开始在... 如图所示,在平面直角坐标系xOy内已知点A和点B的坐标分别为(0,6),(8,0),动点P从点A开始在线段AO上以每秒1个单位长度的速度向点O移动,同时动点Q从点B开始在线段BA上以每秒2个单位长度的速度向点A移动,设点P,Q移动的时间为t秒.
(1)求直线AB的解析式;
(2)当t为何值时,△APQ与△ABO相似?
(3)当t为何值时,△APQ的面积为个平方单位?

答案:(1) y=-3/4x+6
(2)t=30/11或50/13
(3)t=2或3
求过程
展开
百度网友6c48a48
推荐于2016-12-01 · TA获得超过447个赞
知道答主
回答量:62
采纳率:0%
帮助的人:68.7万
展开全部
解:由已知点A和点B的坐标分别为(0,6),(8,0),

(1)直线AB的解析式为:
x/8+y/6=1
即y=-3x/4+6.
(2)当PQ∥BO时,
△APQ与△ABO相似.
得AP/AO=AQ/AB
1*t/6=(8-2*t)/8.
解得
t=2.4秒
∴ 当t=2.4秒时,△APQ与△ABO相似.

(3) ∵OB=8,OA=6.
由勾股定理得
AB=10.
过点Q作QH⊥AO,垂足为H.
得PH∥BO
有△AHQ与△ABO相似.
QH/OB=AQ/AB
=(AB-QB)/AB
=(10-2t)/10
=1-t/5.
得QH=OB*(1-t/5)
=8(1-t/5).
由△APQ的面积=24/5,
又△APQ的面积=AP*QH/2
=1*t*8*(1-t/5)/2
=4t(1-t/5).

4t(1-t/5)=24/5
整理得:
t²-5t+6=0.
解得:
t=2秒,或t=3秒.
∴ 当t=2秒,或t=3秒时,△APQ的面积为5分之24个平方单位.
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式