二阶导数大于0,则函数是凸还是凹?
凹的。
二阶导数大于0,说明该函数的一阶导数是单增函数。也就是说,该函数在各点的切线斜率随着 x 的增大而增大。因此,该函数图形是凹的。
二阶导数,是原函数导数的导数,将原函数进行二次求导。一般的,函数y=f(x)的导数y‘=f’(x)仍然是x的函数,则y’=f’(x)的导数叫做函数y=f(x)的二阶导数。在图形上,它主要表现函数的凹凸性。
切线斜率变化的速度,表示的是一阶导数的变化率。函数的凹凸性(例如加速度的方向总是指向轨迹曲线凹的一侧)。
扩展资料:
如果加速度并不是恒定的,某点的加速度表达式就为:
a=limΔt→0 Δv/Δt=dv/dt(即速度对时间的一阶导数)
又因为v=dx/dt 所以就有:
a=dv/dt=d²x/dt² 即元位移对时间的二阶导数
将这种思想应用到函数中 即是数学所谓的二阶导数
f'(x)=dy/dx (f(x)的一阶导数)
f''(x)=d²y/dx²=d(dy/dx)/dx (f(x)的二阶导数)
设f(x)在[a,b]上连续,在(a,b)内具有一阶和二阶导数,那么,
(1)若在(a,b)内f''(x)>0,则f(x)在[a,b]上的图形是凹的;
(2)若在(a,b)内f’‘(x)<0,则f(x)在[a,b]上的图形是凸的。
参考资料来源:百度百科——二阶导数
2021-01-25 广告