在图1至图3中,点B是线段AC的中点,点D是线段CE的中点.四边形BCGF和CDHN都是正方形.AE的中点是M. (1)

如图1,点E在AC的延长线上,点N与点G重合时,点M与点C重合,求证:FM=MH,FM⊥MH;(2)将图1中的CE绕点C顺时针旋转一个锐角,得到图2,求证:△FMH是等腰... 如图1,点E在AC的延长线上,点N与点G重合时,点M与点C重合,求证:FM=MH,FM⊥MH;(2)将图1中的CE绕点C顺时针旋转一个锐角,得到图2,求证:△FMH是等腰直角三角形;(3)将图2中的CE缩短到图3的情况,△FMH还是等腰直角三角形吗?(不必说明理由) 展开
阿拉木ze
2013-04-05 · TA获得超过160个赞
知道答主
回答量:7
采纳率:0%
帮助的人:1万
展开全部
http://czsx.cooco.net.cn/testdetail/19040/
(1)证明:∵四边形BCGF和CDHN都是正方形,
又∵点N与点G重合,点M与点C重合,
∴FB = BM = MG = MD = DH,∠FBM =∠MDH = 90°.
∴△FBM ≌ △MDH.∴FM = MH
∵∠FMB =∠DMH = 45°,∴∠FMH = 90°.∴FM⊥HM
(2)证明:连接MB、MD,如图23-2,设FM与AC交于点P.
∵B、D、M分别是AC、CE、AE的中点,
∴MD∥BC,且MD = BC = BF;MB∥CD,
且MB=CD=DH
∴四边形BCDM是平行四边形.∴ ∠CBM =∠CDM
又∵∠FBP =∠HDC,∴∠FBM =∠MDH.∴△FBM ≌ △MDH
∴FM = MH,且∠MFB =∠HMD
又∵MD∥BC,∴∠FMD=∠APM,
∴∠FMH =∠FMD-∠HMD =∠APM-∠MFB =∠FBP = 90°.
∴△FMH是等腰直角三角形
(3)解:△FMH是等腰直角三角形…
lyt1114633941
2012-12-13
知道答主
回答量:6
采纳率:0%
帮助的人:3.4万
展开全部
(1)AE的中点是M,B是AC的中点,D是CE的中点,
AM=ME,AB=BC=CD=DE,两个正方形全等,
fm=MH
四边形四边形BCGF和CDHN都是正方形,
角FCG=角GCH=45度(正方形的性质)
45+45=90,FM⊥MH
题目不难,貌似只是初中水准,因为输入比较烦嗦,所以不好意思了楼主
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
10572148
2012-12-12 · TA获得超过4841个赞
知道答主
回答量:96
采纳率:0%
帮助的人:16.2万
展开全部
1
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式