在求矩阵的秩时,有必要化成行最简形吗?

 我来答
一叹t
高能答主

2023-06-26 · 我们不创作,我们只是信息的搬运工。
一叹t
采纳数:2139 获赞数:11985

向TA提问 私信TA
展开全部

在求矩阵的秩时,化为阶梯型我们就可以很好地看出矩阵的秩,没有必要非得化成行最简形。有的需要计算方程组的解,化成最简型答案看起来比较清晰,所以才化成行最简形。只求矩阵的秩没有必要化成行最简形。

矩阵的行阶梯型,其特点为:每个阶梯只有一行;元素不全为零的行(非零行)的第一个非零元素所在列的下标随着行标的增大而严格增大(列标一定不小于行标);元素全为零的行(如果有的话)必在矩阵的最下面几行。

行最简形,在阶梯形矩阵中,若非零行的第一个非零元素全是1,且非零行的第一个元素1所在列的其余元素全为零,就称该矩阵为行最简形矩阵。

扩展资料:

行最简形矩阵的性质:

行最简形矩阵是由方程组唯一确定的,行阶梯形矩阵的行数也是由方程组唯一确定的。

矩阵的行阶梯形和行最简形的定理:

1、任一矩阵可经过有限次初等行变换化成阶梯形矩阵。

2、任一矩阵可经过有限次初等行变换化成行最简形矩阵。

3、矩阵在经过初等行变换化为最简形矩阵后,再经过初等列变换,还可以化为最简形矩阵,因此,任一矩阵可经过有限次初等变换化成标准形矩阵。

行阶梯形的结果并不是唯一的。例如,行阶梯形乘以一个标量系数仍然是行阶梯形。但是,可以证明一个矩阵的化简后的行阶梯形是唯一的。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式