已知一次函数y=kx+b的图象经过点(-1,-5)
且与正比例函数y=1/2x的图象相交与点(2,a),求(1)a的值(2)k,b的值(3)这两个函数图象与x轴所围成的三角形面积要过程啊!!!!!...
且与正比例函数y=1/2x的图象相交与点(2,a),求(1)a的值 (2)k,b的值 (3)这两个函数图象与x轴所围成的三角形面积
要过程啊!!!!! 展开
要过程啊!!!!! 展开
3个回答
展开全部
解:(一)将(-1,-5)代入y=kx+b得k=b+5,所以函数变为y=(k+5)x+b (1);
将y=x/2与(1)组成方程组解得x=2b/(-2b-9),y=b/(-2b-9);
所以2b/(-2b-9)=2,即b=-3,b/(-2b-9)=a,即a=1.
(二)由(一)知b=-3,所以k=b+5=2.
(三)由(二)知y=kx+b为y=2x-3,且与y=x/2的交点为(2,1),
令A(2,1),y=2x-3与x轴的交点为B,则B(3/2,0),
所以OA=3/2,三角形OAB中OA边上的高为h=1,
所以S三角形OAB=OA*h/2=3/4。即这两个函数图象与x轴所围成的三角形面积为3/4。
将y=x/2与(1)组成方程组解得x=2b/(-2b-9),y=b/(-2b-9);
所以2b/(-2b-9)=2,即b=-3,b/(-2b-9)=a,即a=1.
(二)由(一)知b=-3,所以k=b+5=2.
(三)由(二)知y=kx+b为y=2x-3,且与y=x/2的交点为(2,1),
令A(2,1),y=2x-3与x轴的交点为B,则B(3/2,0),
所以OA=3/2,三角形OAB中OA边上的高为h=1,
所以S三角形OAB=OA*h/2=3/4。即这两个函数图象与x轴所围成的三角形面积为3/4。
Sievers分析仪
2024-10-13 广告
2024-10-13 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准...
点击进入详情页
本回答由Sievers分析仪提供
展开全部
1.由题意得:
y=1/2x
∴a=1/2*2
=1
2.由题意得:y=kx+b 经过点(-1,-5) 和点(2,1)
∴ (代入) -5=-k+b 1=2k+b
解得{k=2 b=-3
3. 解: 由(2)可得 y=2x-3
当它与x轴相交时
得 0=2x-3
x=1.5
即△的底为1.5
由题意得直线y=2x-3 与 直线y=1/2x的交点为(2.,1)
∴△的高为纵坐标 1
∴S△=1.5*1/2
=0.75
y=1/2x
∴a=1/2*2
=1
2.由题意得:y=kx+b 经过点(-1,-5) 和点(2,1)
∴ (代入) -5=-k+b 1=2k+b
解得{k=2 b=-3
3. 解: 由(2)可得 y=2x-3
当它与x轴相交时
得 0=2x-3
x=1.5
即△的底为1.5
由题意得直线y=2x-3 与 直线y=1/2x的交点为(2.,1)
∴△的高为纵坐标 1
∴S△=1.5*1/2
=0.75
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
y=1/2x
a=1/2 2
a=1
y=kx+b
1=2k+b 1
-5=-k+b 2
1-2
3k=6
k=2
b=-3
与正比例函数y=1/2x的图象相交与点(2,1),
所以高是a的纵坐标
高就是1
y=2x-3交x轴于(3/2,0)
y=1/2x于(0,0)
所以底为3/2
所以面积
3/2 乘以1 乘以1/2=3/4
a=1/2 2
a=1
y=kx+b
1=2k+b 1
-5=-k+b 2
1-2
3k=6
k=2
b=-3
与正比例函数y=1/2x的图象相交与点(2,1),
所以高是a的纵坐标
高就是1
y=2x-3交x轴于(3/2,0)
y=1/2x于(0,0)
所以底为3/2
所以面积
3/2 乘以1 乘以1/2=3/4
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询