求x^3*arccosx/√(1-x^2)的不定积分
1个回答
展开全部
先计算
∫ x³/√(1-x²) dx
=(1/2)∫ x²/√(1-x²) d(x²)
令√(1-x²)=u,则x²=1-u²,d(x²)=-2udu
=(1/2)∫ [(1-u²)/u](-2u) du
=∫ (u²-1) du
=(1/3)u³ - u + C
=(1/3)(1-x²)^(3/2) - √(1-x²) + C
因此:x³/√(1-x²) dx = d[(1/3)(1-x²)^(3/2) - √(1-x²)]
下面计算本题
∫ x³arccosx/√(1-x²) dx
=∫ arccosx d[(1/3)(1-x²)^(3/2) - √(1-x²)]
分部积分
=(1/3)(1-x²)^(3/2)arccosx - √(1-x²)arccosx - ∫ [(1/3)(1-x²)^(3/2) - √(1-x²)] darccosx
=(1/3)(1-x²)^(3/2)arccosx - √(1-x²)arccosx + ∫ [(1/3)(1-x²) - 1] dx
=(1/3)(1-x²)^(3/2)arccosx - √(1-x²)arccosx - (2/3)x - (1/9)x³ + C
【数学之美】团队为您解答,若有不懂请追问,如果解决问题请点下面的“选为满意答案”。
∫ x³/√(1-x²) dx
=(1/2)∫ x²/√(1-x²) d(x²)
令√(1-x²)=u,则x²=1-u²,d(x²)=-2udu
=(1/2)∫ [(1-u²)/u](-2u) du
=∫ (u²-1) du
=(1/3)u³ - u + C
=(1/3)(1-x²)^(3/2) - √(1-x²) + C
因此:x³/√(1-x²) dx = d[(1/3)(1-x²)^(3/2) - √(1-x²)]
下面计算本题
∫ x³arccosx/√(1-x²) dx
=∫ arccosx d[(1/3)(1-x²)^(3/2) - √(1-x²)]
分部积分
=(1/3)(1-x²)^(3/2)arccosx - √(1-x²)arccosx - ∫ [(1/3)(1-x²)^(3/2) - √(1-x²)] darccosx
=(1/3)(1-x²)^(3/2)arccosx - √(1-x²)arccosx + ∫ [(1/3)(1-x²) - 1] dx
=(1/3)(1-x²)^(3/2)arccosx - √(1-x²)arccosx - (2/3)x - (1/9)x³ + C
【数学之美】团队为您解答,若有不懂请追问,如果解决问题请点下面的“选为满意答案”。
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询