用换元积分法求下列各不定积分。(请进!请详细说明!谢谢!)
1∫√(2+3x)dx2∫x√(x^2+3)dx3∫[1/√(1-25x^2)]dx4∫sec^4xdx注意:要用换元法,第一类积分的换元法...
1 ∫√(2+3x) dx
2 ∫ x√(x^2+3)dx
3 ∫ [1/ √(1-25x^2)]dx
4 ∫sec^4xdx
注意:要用换元法,第一类积分的换元法 展开
2 ∫ x√(x^2+3)dx
3 ∫ [1/ √(1-25x^2)]dx
4 ∫sec^4xdx
注意:要用换元法,第一类积分的换元法 展开
1个回答
展开全部
原式=∫(2+3x)^(1/2)*1/3d(3x)
=1/3∫(2+3x)^(1/2)d(2+3x)
=1/3*(2+3x)^(1/2+1)/(1/2+1)+C
=2(2+3x)√(2+3x)/9+C
原式=∫√(x²+3)*1/2dx²
=1/2*∫(x²+3)^1/2d(x²+3)
=1/2*(x²+3)^(3/2)/(3/2)+C
=(x²+3)√(x²+3)/3+C
原式=1/5*∫d(5x)/√(1-25x²)
=(arcsin5x)/5+C
原式=∫sec²x(src²xdx)
=∫(tan²x+1)dtanx
=tan³x/3+tanx+C
=1/3∫(2+3x)^(1/2)d(2+3x)
=1/3*(2+3x)^(1/2+1)/(1/2+1)+C
=2(2+3x)√(2+3x)/9+C
原式=∫√(x²+3)*1/2dx²
=1/2*∫(x²+3)^1/2d(x²+3)
=1/2*(x²+3)^(3/2)/(3/2)+C
=(x²+3)√(x²+3)/3+C
原式=1/5*∫d(5x)/√(1-25x²)
=(arcsin5x)/5+C
原式=∫sec²x(src²xdx)
=∫(tan²x+1)dtanx
=tan³x/3+tanx+C
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询