大一高数微积分题,谢谢
设函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且f(a)=f(b)=0,证明:在开区间(a,b)内至少存在一点ξ,使得f(ξ)的导+f(ξ)=0谢谢...
设函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且f(a)=f(b)=0,证明:在开区间(a,b)内至少存在一点ξ,使得f(ξ)的导+f(ξ)=0
谢谢 展开
谢谢 展开
4个回答
展开全部
大一课本上有一个定理可以直接证明这题,此题你可以这样想,如果在数轴上有一点其值大于0,一点其值小于0,那么两点之间必有一点等于0,你可以设有一点是此函数最大值,最小值一样可行,在最大值左右极小位置都分别必有一点小于此最大值,左右斜率一个大于0,一个小于0,那么此最大值点斜率等于0,此题大一课本上绝对是有定理证明的,你看看课本吧!绝对有的,因为我只高你一届
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
除非f(x)=0对[a,b]内所有值成立, 在最大值或者最小值处找。
追问
应该怎么写步骤呢?
追答
就像另一位说的,这个是书中的标准定理,可以看看书上怎么写的
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询