已知cosa=1/7,cos(a+β)=-11/14,且a,β∈(0,π/2),求sinβ【提示:β=(a+β)-a】
1个回答
展开全部
已知cosa=1/7,cos(a+β)=-11/14,且a,β∈(0,π/2),求sinβ【提示:β=(a+β)-a】
(sina)^2=1-(cosa)^2=1-1/49=48/49
a∈(0,π/2),
sina=(4根号3)/7
a,β∈(0,π/2),
cos(a+β)=-11/14,
a+β∈(π/2,π),
[sin(a+β)]^2=1-[cos(a+β)]^2=1-121/196=75/196
sin(a+β)=(5根号3)/14
sinβ=sin[(a+β)-a]
=sin(a+β)cosa-cos(a+β)sina
=[(5根号3)/14]*(1/7)-(-11/14)[(4根号3)/7]
=(49根号3)/98
=根号3/2
(sina)^2=1-(cosa)^2=1-1/49=48/49
a∈(0,π/2),
sina=(4根号3)/7
a,β∈(0,π/2),
cos(a+β)=-11/14,
a+β∈(π/2,π),
[sin(a+β)]^2=1-[cos(a+β)]^2=1-121/196=75/196
sin(a+β)=(5根号3)/14
sinβ=sin[(a+β)-a]
=sin(a+β)cosa-cos(a+β)sina
=[(5根号3)/14]*(1/7)-(-11/14)[(4根号3)/7]
=(49根号3)/98
=根号3/2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询